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CHAPTER 1

Infinite

Products

1. Introduction. Two topics, infinite products and asymptotic
series, which are seldom included in standard courses arc treated to
some extent in short preliminary chapters.

The variables and parameters encountered are to be considered
complex except where it is specifically stipulated that they are real.

Exercises are included not only to present the reader with an
opportunity to increase his skill but also to make available a few
results for which there scemed to be insufficient space in the text.

A short bibliography is included at the end of the bhook. All
references are given in a form such as Fasenmyer [2], meaning item
number two under the listing of references to the work of Sister M.
Celine Fasenmyer, or Brafman [1;944], meaning page 944 of item
number one under the listing of references to the work of Fred Braf-
man. In general, specific reference to material a century or more
old is omitted. The work of the giants in the field, Euler, Gauss,
Legendre, etc., is easily located either in standard treatises or in the
collected works of the pertinent mathematician.

2. Definition of an infinite product. The elementary theory of
infinite products closely parallels that of infinite series. Given a
sequence a; defined for all positive integral k, consider the finite
product

M Po= 1A+ a0 = (1 + ) +a) (1 + a.
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If Lim P, exists and is equal to P # 0, we say that the infinite
n-ypo

product
(2) II (1 + a.)

converges to the value P. If at least one of the factors of the product
(2) is zero, if only a finite number of the factors of (2) are zero, and
if the infinite product with the zero factors deleted converges to a
value P> = 0, we say that the infinite product converges to zero.

If the infinite product is not convergent, it is said to be divergent.

If that divergence is due not to the failure of Lim P, to exist but
nyoo

to the fact that the limit is zero, the product is said to diverge to zero.
We make no attempt to treat products with an infinity of zero
factors.

The peculiar role which zero plays in multiplication is the reason
for the slight difference between the definition of convergence of an
infinite product and the analogous definition of convergence of an
infinite series.

3. A necessary condition for convergence. The general term
of a convergent infinite series must approach zero as the index of
summation approaches infinity. A similar result will now be ob-
tained for infinite products.

Tueorem 1. If]] (1 + a,) converges,
n=1

Lima, = 0.
npm

Proof: 1f the product converges to P 5 0,

Lim ﬁ 1+ ay

1= g. E S8 = Lim (1 + @)
Lim[[(14+a) 7
nyra k=1

Hence Lim @, = 0, as desired. If the product converges to zero,
n-po

remove the zero factors and repeat the argument.

4. The associated series of logarithms. Any product without
zero factors has associated with it the series of principal values of
the logarithms of the separate factors in the following sense.
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THEOREM 2. If no a, = —1, [] (1 4+ a.) and 3 Log (1 + a,)
n=1 n=1
converge or diverge together.

Proof: Let the partial product and partial sum be indicated as
follows:

n

P.=Jl(1+a), S.=XLog(l+ay.

k=1

Then* exp S, = P,. We know from the theory of complex variables

that Lim exp 8, = exp Lim S,. Therefore P, approaches a limit
n-yw n-pco

if and only if S, approaches a limit, and P, cannot approach zero
because the exponential function cannot take on the value zero.

5. Absolute convergence. Assume that the product J] (1 + a,)

nm]
has had its zero factors, if any, deleted. We define absolute con-
vergence of the product by utilizing the associated series of logarithms.

The product ][] (1 + a.), with zero factors deleted, is said to be

n=1

absolutely convergent if and only if the series Y Log (1 + a,) is
absolutely convergent. =t

THEOREM 3. The product [ (1 4 a.), with zero factors deleted, s
n=1

absolutely convergent if and only if 3 a, is absolutely convergent.

n=1

Proof: First throw out any a,’s which are zero; they contribute
only unit factors in the product and zero terms in the sum and thus
have no bearing on convergence.

We know that if either the series or the product in the theorem

converges, Lim a, = 0. Let us then consider n large enough, n > n,,
n-poo
so that |a.] < % forall n > n,. We may now write
0 Log (1 +a) _ & (=1)'at
a, B k=90 k +_ 1 ’

from which it follows that

Log (1 +a,) Slalt 11
Tw o T HEZRT & e

*We make frequent use of the common notation exp u = e
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Thus we have

]‘. < L&g_(_l + a") §
2 an 2
from which
Log (1 + a,) 3 . a.
—a <g and peETrS| <2

By the comparison test it follows that the absolute convergence of

either of >~ Log (1 + a.) or 2 a, implies the absolute convergence
n=1

n=1
of the other. We then use the definition of absolute convergence
of the product to complete the proof of Theorem 3.
Because of Theorem 2 it follows at once that an infinite product
which is absolutely convergent is also convergent.

ExampLE (a): Show that the following product converges and
find its value:

11 [1 tTor 1>1(n ¥ 3)}'

The series of positive numbers
> 1
PR

is known to be convergent. It can easily be tested by the poly-

. . . . — 1
nomial test or by comparison with the series Y, t Hence our
n=1

product is absolutely convergent by Theorem 3.

The partial products are often useful in evaluating an infinite
product. When the following method is employed, there is no need
for the separate testing for convergence made in the preceding
paragraph. Consider the partial products

oy 1 o (k42
P”"H[1+<k+1><k+3)}‘H<k+1)<k+3>

B:4-5--(n+27 n+2 3

234 (n+1)]4-5-6---(n+3)] 2 ‘n+s

At once Lim P, =3, from which we conclude both that the in-
n-yc

finite product converges and that its value is 2.
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ExamprLe (b): Show that if 2 is not a negative integer,
(n — 1! ne

Li
e GFDGE+2E+3)Gtn—1
exists.
We shall form an infinite product for which the expression

p-_ =Dt w
" e+ DE+2)+3)--(+n—1)
is a partial product, prove that the infinite product converges, and

thus conclude that Lim P, exists.

n-ym
Write
P - n! (n 4+ 1)-
T e+ D +2)---(z+n)
7! 2: 3= 4 (n+ 1)
T D2 (etn) 1f 203w

e R IR R

Consider now the product*®

@ a6+ G+l

Since
—1 z
Lim n? [(1 + 5) (1 + 1) - 1]
oo n n
_ Lim (1 + ZB)_I(1.+ g—1 _ Lim (1 + V/J)jw;l — 2B
50 g g0 [h
AL o g2 = DAF AT, ),
80 28 50 2

we conclude with the aid of the comparison test and the convergence

of > 7-1-2 that the product (2) converges. Therefore Lim P, exists.
n-ypo

n=]

6. Uniform convergence. Let the factors in the product

©

I [1 + a.(z)] be dependent upon a complex variable z. Let R

nazl

*We shall find in Chapter 2 that this product has the value zI'(z).
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be a closed region in the z-plane. If the product converges in such
a way that, given any e > 0, there exists an no independent of z for
all zin R such that

notp

H{+amn—ﬁ1+m@]<e

for all positive integral p, we say that the product H (1 4+ a.(2)]is
=1

uniformly convergent in the region R.
Again the convergence properties parallel those of infinite series.
We need a Weierstrass 3/-test.

THEOREM 4. If there exist positive constants M, such that 3, M,

n=1

is convergent and |a.(2)| < M, for all z in the closed region R, the

product [] [1 + a.(2)] is uniformly convergent in R.
=1

Proof: Since Z M, is convergent and M, > 0, H (1 + M,) is

n=]

convergent and Lim H (I + M) exists. Therefore, given any
nypw k=1

¢ > 0, there exists an 1, such that

notp

IO +M) -1+ M)< e

for all positive integers p. Tor all 2z in R, each a.(2) is such that
lax(2)| < M,. Hence

no+p 7o

I+ a@] - [T0 + )]

no no+p

I1 1+ak(Z]—ll

k=rn,+1

[T+ ak(z)]

k=1

7o

1+ M) [ fI (14 M) — 1]

k=n,+1

not+p no

<kI=II(1+Mk>—H<1+Mk)<e,

k=1

which was to be proved.
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EXERCISES
1. Show that the following product converges, and find its value:
it 6 21
I [1 MRV QJ ane g
= 1 i
3. Show that [] (1 - %) diverges to zero.
n=2
4. Investigate the product J] (1 -+ 2%) in |z] < 1.
n=0
Ans. Abs. conv. to L
1 -2
5. Show that [] exp(%) diverges.
n=Il
6. Show that H exp(——1> diverges to zero.
n=l
7. Test [] <1 - %) Ans. Abs. conv. for all finite 2.
n=}

s — n+1
8. Show that J] [1 -+ (—L—)h} converges to unity.
n=]

9. Test for convergence: ][] (1 - J—) for real p # 0.
=l

Ans. Conv. for p > 1-div. for p £

1.

10. Show that H sin 7”/") is absolutely convergent for all finite z with the usual

convention at z = 0. Hint: Show first that

Lim nz[s_inﬁ@ _ 1} __2
n—)tn 6

11. Show that if ¢ is not a negative integer,

(- ) ()]

is absolutely convergent for all finite 2. Hinl: Show first that

(1= )l -] 1)
%;rr;n[(l P exp\ 1 2\c =32 ).



CHAPTER 2

The Gamma

and Beta Functions

7. The Euler or Mascheroni constant v. At times we need to
use the constant v, defined by

(1) y = Lim (H, — Log n),
"‘)m

in which, as usual,
=1
(2) Ho= 3% 5
k=1

We shall prove that 4 exists and that 0 = vy < 1. Actually
v = 0.5772, approximately.

Let A, = H, — Logn. Then the 4, form a decreasing sequence
hecause

Ay —An=H,,, —H,— Log(n+1) 4+ Logn

1 n 1 1
=E_T+L0gn+1‘n+1+L0g<1“ﬁ+1>
@ 1
" < 0.

(B + Din + 1)x
Furthermore, since 1/t decreases steadily as ¢ increases,
1 fk dt 1
z Mo 2 >
(3) k<k_lt<k—1’ k=2
We sum the inequalities (3) from & = 2 to & = n and thus obtain
8
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2 3 n
Ho-t< [y (2o Sy,

n—-1 t
or
H,—1<Logn< H,_,,

from which it follows that

-1 < —H,+ Logn < —-7—1%—,

or
1>4, > -
n

Thus we see that the A, decrease steadily, are all positive, and
are less than unity. It follows that y exists and is non-negative
and less than unity.

8. The Gamma function. We follow Weierstrass in defining
the function I'(z) by

W g = T [(0+ Dewl(-5)]

in which v is the Euler constant of Section 7. The product in (1)
is absolutely convergent for all finite 2z as was seen in Ex. 11, page 7,
the special case ¢ = 0 and z replaced by (—z). That the product
is also uniformly convergent in any closed region in the z-plane is
easily shown by employing the associated series of logarithms.

We shall see in Section 15 that the function I'(z) defined by (1)
is identical with that defined by Euler’s integral; that is,

I'(z) = f e~ tt=1 dt, Re(z) > 0.
0

The right member of (1) is analytic for all finite z. Its only zeros
are simple ones at z = 0 and at each negative integer. We may
therefore conclude that

(a) T(z)isanalytic except atz = nonpositive integersandz = «;

(b) T'(2) has a simple pole at z = each nonpositive integer, z = 0,
-1, =2, =3, -;

(¢) T(z) has an essential singularity at z = «, a point of con-
densation of poles;

(d) r(2) is never zero [because 1/T(2) has no poles].
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9. A series for I''(z)/T(z). By taking logarithms of each mem-
ber of equation (1) of Section 8, we obtain

log T(2) = —Logz — vz — Zm: [Log(l + %) - S:l

Term-by-term differentiation of the members of the foregoing
equation yields

I (z) _ 1 o _ l
T = T > (z i n)’
or
I'(2)
(1) _I‘-(z)_ + ,Z:, n(z + n)’

the series on the right being absolutely and uniformly convergent
in any closed region excluding the singular points of I'(z), a result
easily deduced by using the Weilerstrass M-test and the convergence

ofz

n=1

10. Evaluation of I'(1) and I'(1). In the Weierstrass definition
of T'(z) put z = 1 to get

iy = e () e )

= ¢ Lim J] [Zf_j“_l exp(— 1)]
npw k=l k k

= ¢ Lim (n + 1) exp(—H.)
ny»owo

= ¢7 Lim (n + 1) exp(— v — Log n — e),
nywo

in which ¢, — 0 asn — «. It follows that
1 .. n+1_
O e %1;2 P v =1,
so that T(1) =1
We know from the series for I''(2) /T'(z) obtained in Section 9 that
rd _
() 1+zn(n+1)

so that
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H1) = ey — LN
) = =7 1+2_:1<n n+1
. 1

- =r =14 1m (1 - )

since the series involved telescopes. Thus we find that T/(1) = —

11. The Euler product for I'(z). ¥rom the Weierstrass product
definition of T'(z) we obtain

zI‘(z) — CXp(—’yZ)
[ (1 + ) exe(-7)]
so that
n -1
(1) 2T(2) = exp(—~2) Lim ] [(1 + :i) exp< )}
nYP»o k=l A /\
But
v = Lim (H, — Logn) = Lim [H, — Log (n + 1)]
npoo ny»o
. n k + 1
= Lim [ Z Log }
n-yo
Hence
n k +
exp(—vz) = Lim exp[-—z]{ + 2z Z Log ____]
n-P»w

m [ (5F 1) el =5) )

Therefore (1) can be written

R (R RO S|

from which it follows that

T

which is Euler’s product for T(z). Note that for real = > 0,
I'(x) > 0.
Refer now to Example (b), page 5, to conclude that
s (n—1!n
@) P(z)——{irg 2+ 1)z+2)---(z+n—1)

It will be of value to us later to note that, since




12 THE GAMMA AND BETA FUNCTIONS |[Ch.2

Lim (n+ 1) _ 1,

nywo n*

we can equally well write the result (3) in the form

. n! n*
(4) I() :%_1;2 2z+1D(z+2)---(24+n)

12. The difference equation T'(z + 1) = zI'(2). From Euler’s
product for T'(z) we obtain

ooy o G029+ 5]
S (FRIEN

— 2 17(1+} E 2+ 1\
Tz 1,.1_11_<1+n>1+71><1+ n>:|
k

oz k+1 0 k4 zh)
Tz lnim prle} k EF+2z+1
z .o n—+1 1+ =2 _
P A S Sl
Therefore
(1) T(z + 1) = 2T'(z)

for all finite 2z except for the poles of T'(z).

If z = m, a positive integer, iterated use of the equation (1) yields
T(m~+1)=m!. Since T'(1) =1, this is another of the many reasons
we define 0! = 1.

13. The order symbols 0 and O. Let R be a region in the com-

plex z-plane. If and only if
Lim 1) = 0,

z¥»c in R g(z)

we write

f(z) = o[g(2)], asz — ¢ in R.
/()
g9(2)
f(z) = Ofg(2)], as z — ¢ in R.

If and only if is bounded as z — ¢ in R, we write
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It is common practice to omit the qualifying expressions such
as “z — ¢ in R” whenever the surrounding text is deemed to make
such qualification unnecessary to a trained reader. The point
z = ¢ may on occasion be the point at infinity. Also, the symbols
o and O are sometimes used when the variable z is real, the approach
is along the real axis, and even when z takes on only integral values.

12

e . sin- 2 .
ExampLE (a): Since Lim = 0, we may write
zy»0

sintz = o(z), as z — 0,
noting that in this instance the manner of approach is immaterial.

ExampLE (b): For real z, |cos x| = 1, from which it is easy to
conclude that

cosz — 4z = O(x), as x — «, r real,

ExampLE (¢): In Chapter 3 we shall show that if

7e

su(2) = D2 klx¥,

k=0

e = s,(z)| £ (n 4+ D! |z for Re(z) = 0.

From the preceding inequality we may conclude that, for fixed n,
p—t
f et dt _ s.(z) = ofan), asz — 0in Re(z) £ 0.
0

14. Evaluation of certain infinite products. The Weicrstrass
infinite product for I'(z) vields a simple evaluation of all infinite
products whose factors are rational functions of the index n. The
most general such product must take the form

CHFm4a)n+a)--(n+a)
(1) P=1l sty T80+ b)

because convergence requires that the nth factor approach unity as
n — o, which in turn forces the numerator and denominator poly-
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nomials to be of the same degree and to have equal leading coeffi-
cients. Now the nth factor in the right member of (1) may be put

in the form
1/ & z 1
+ ‘(Z =2 be) + o),

so that we must also insist, to obtain convergence, that
(2) Z Ay = Z b:.
k=1 k=1

If (2) is not satisfied, the product in (1) diverges; we get absolute
convergence or no convergence.

We now have an absolutely convergent product (1) in which the
@’s and b’s satisfy the condition (2).

Since

exp(1 Z ak> =exp<l Z bk>,
n i1 noy=1

we may, without changing the value of the product (1), insert the
appropriate exponential factors to write

(3) P=1I-

The Weierstrass product, page 9, for 1/T'(z) yields

nI_I: l:(l + 7‘) exp( 7?)] - z@(?(i‘z)l‘_(éj - 'z + l)1 exp(vz)

Thus we obtain from (3) the result

_ 17 (1 + by) exp(vbs)
P= AI=Ix (1 4+ ax) explya)

exp[@ = o) I

k= ak)

8

&
ay = by, and if mo ay or by s a negative
k=1 k=1

TrEOREM 5. If
1nteger,
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ﬁ (n+a)(ntas)---(n+a,) _ r(1+b)T(1+bs)---T(1+0,) )
aci (b)) (n+by)- - - (n+b,) r{(14+a)r(l1+a,)---T(l4+a,)

If one or more of the a, is a negative integer, the product on the
left is zero, which agrees with the existence of one or more poles of
the denominator factors on the right.

ExampLe: Evaluate

ﬁ(c—a-{—n—l)(c—b-{—n—l)
asilc+n—Dc—a—-b+n-—1)

Since(c—a—1)+(c=b—-1)=(@Cc—-1)+(c—a—-b-—1),
we may employ Theorem 5 if no one of the quantities ¢, ¢ — a,
¢ — b, ¢ —a — b is either zero or a negative integer. With those
restrictions we obtain

> c—a+n—Dc—b+n—-1) T()T'(c—a—0>b)
(4) ,gl(c—{—n—l)(c—a—b—f—n—-l)_ I'(c — a)T'(c — b)

15. Euler’s integral for I'(z). Elementary treatments of the
Gamma function are usually based on an integral definition.
Theorem 6 connects the function I'(z) defined by the Welerstrass
product with that defined by Euler’s integral.

TrEOREM 6. If Re(2) > 0,

(1) @) = f e

We shall establish four lemmas intended to break the proof of
Theorem 6 into simple parts.

Lemmal. If0a<1l,1 4+ a=expla) =1 — o)

Proof: Compare the three series
l1+a=14+a, expla)=1+at 2 % (1—a)t=14a+ Eza".

Lemma 2. If 02 o<1, (1 —a)*2 1 — na, for n a positive
integer.

Proof: Forn =11 —a=1—1" o asdesired. Nextassume
that

(1—a)*=1— ke,

and multiply each member by (1 — o) to obtain
(1 —a) =2 (1 =—a)(1 —ka)=1-— (k + Ve + ke,
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so that
1= 21— (k+ e

Lemma 2 now follows by induction.

Lemma 8. If 0 £t < n, n a positive 1nieger,

Proof: Use a = t/n in Lemma 1 to get

-1
1+ix exp<f~> < (1 - 5)
n n n
from which

o (e ees(-d

or

so that

3) et — (1 - 3) > 0.
But also

which may be used in (4) to obtain

(5) et — (1 - 5) < e—‘[l -1+ g] =&
n n n

The inequalities (3) and (5) constitute the result stated In
Lemma 3.
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Lemma 4. If n 1s integral and Re(z) > 0,

(6) I(z) = Lim <1 _ i) P
n-po VO n

Proof: In the integral on the right in (6) put ¢ = ng and
thus obtain

n n 1
(7 f <1 - %) ttdt = n’f (1 — g)~p=" dB.
0 0

An integration by parts gives us the reduction formula
1 1
[a—gremras=" 1~ o as
0 ZJo
iteration of which vields

. \ a1 nin — 1)(n — 2 s
L(I—B)B dﬂ_z(z—}—l)(z—}—?) z+7l—1)fﬁ+ld3

n!

T e+ DG+ 2) G+

Now (7) becomes

. AV nlne
j;(l _ﬁ)t dt-—- 2(2+ 1)(2+2)(2+7Z)
so that

Lim "<1 - i) = dt = Lim nln: = @2
aye Yo 7 nye 2(2 + 1) (2 + n)

by equation (4), page 12.
We are now in a position to prove Theorem 6, which states that

(8) I'(z) = fme“‘zfl*I dt, Re(z) > 0.

The integral on the right in (8) converges for Re(2) > 0. With
the aid of Lemma 4, write

f ~4e1 gt — T(z) = Lim U et di — f <1 — i) e dt}
0 n-Pp o 0 0 n
= Lim l:f {e—' - (1 — £> }t'—‘ dt + f e~ ta1 dt}.
n-pco 0 n / n
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From the convergence of the integral on the right in (8) it follows
that

@

Lim e~ dt = 0,

nypo vYn
Hence
(9) f et dt — T(z) = Lim [e“ - (1 — t-) Jt"‘ dt.
0 ndpw YO 1

But, by Lemma 3 and the fact that [¢z] = {80

n n g9 —¢
f [e~¢ —_ (1 — £> :ltr—l di f t_g; . {Re(z2)—1 dt
0 n 0 n

1 n
‘f e~ t{Re(a)+1 dt.
J o

n

«
Nowf e~ HRe()H df converges, sof e~ {{Re+1 diis bounded. There-
0 0

Lim [e“ — (1 — £> ]t“l dt = 0,
nycw Y0 n

and we may conclude from equation (9) that (8) is valid.

IIA

IIA

fore

16. The Beta function. We define the Beta function B(p, ¢) by

1) B = [t~ grtd, Re(p) > 0, Re(g) > 0.

Another useful form for this function can be obtained by putting
t = sin? ¢, thus arriving at

ir
(2) B(pyg = 2f sin**~lp cos*lp dp, Re(p) > 0, Re(qg) > 0.
4]

The Beta function is intimately related to the Gamma function.
Consider the product

(3) F(P)F(Q) = fme"tp_l dt - fme*"yq—l dv.

In (3) use t = z2 and » = y? to obtain

F(p)F(Q) = 4fmexp(—l'2)l'2p_l dx . f exp(_y2)y2q-—1 dy,
0 4]
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r)r(e) = 4 [ exp(—at - yariyie do dy.
0 0

Next turn to polar coordinates for the iterated integration over the
first quadrant in the zy-plane. Using © = rcos 6, y = 7sin 6, we
may write

@ i
T(p)I'(g) = 4f f exp(~—rY)rr+e? cog??m1g ginte g rdodr
0 0

I

@ ir

2f exp(—r)re+2eidr . 2f costP—1g sin?v19 d8.
0 0

Now put r = 4/t and § = ir — ¢ to obtain

r{p)T(q) = f e~ rtet df - 2f sin?® "l cos? e do,
0 0
from which it follows that

I'(p)T(g) = T(p + @)B(p, 9)-
Tueorem 7. If Re(p) > 0 and Re(q) > 0,

@ B = RETD

By (4), B(p,q) = B(g,p), a result just as easily obtained directly
from (1) or (2).

Equations (2) and (4) yield a generalization of Wallis’ formula
of elementary calculus. In (2) put 2p — 1=m, 2¢ — 1 = n, and

use (4) to write
m + 1 n+1>
P( 2 )P< 5
2P<m+n+2)

valid for Re(m) > —1, Re(n) > —1.

ix
(5) f Sin"'<p cos™yp d<p =
0

17. The value of I'(z)T(1 — z). The important relation (4) of
Section 16 suggests that the product of two Gamma functions whose
arguments have the sum unity may possess some pleasant property,
sinceif p+¢=1,T(p+¢q =T1) = 1.

If z is such that 0 < Re(z) < 1, both z and (1 — 2z) have real part
positive, and we may use (4) of Section 16 to write
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B(z,1 — 2) = fl“‘(l — b= dt
0

- [T

Now put t/(1 — t) = y to arrive at

rrd — 2

_ vy
(1) rri —z = CIF 0 < Re(2) < 1.

The integral on the right in (1) can be evaluated with the aid of
contour integration in an «-plane where Re(«) = y. The contour

«-plane

C
R

o
/

(¢
o

Figure 1
C in Figure 1 encircles a single simple pole @« = —1 of the integrand
in
ol da
cl4+ «a

so that the residue theory at once yields

a ! da

(2) T .~ 2mi(=D7 = 2miexplrile — DI
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The integral on the left in (2) may be split into four parts, as indi-
cated in the figure. In detail we use

(a) « = Rei*, ¢ from 0 to 2r;

(b) a = yer~i y from R to &;

(c) a = e, g from 2= to 0;

(d) a = yeoi y from & to R.

Thus (2) can be written in the form

3) *iR- exp(iz6) df ff—lexp(sz dy
o 1+ R exp(76) 1 +y

® 187 exp(i28) do fy'“‘exp(Ozz
2x 1 + & exp(48) 1+

Nowlet § - 0and R — = and use 0 < Re(z) < 1 to conclude that
the first and third integrals on the left in (3) approach zero. Then
the limiting form of (3) is

= 2miexp[m(z—1)].

+

Oyr-I@ myz—lgii/
w 1+ ¥ o 1+ y

from which we obtain

exp(2riz) = — 271 exp(mz),

“y=tdy _ 2m exp(miz) 2m

o 1+y  exp(@riz) — 1 exp(niz) — exp(—miz)
We have thus shown that, for 0 < Re(z) < 1,

yldy o«

(4) FET1 —2) = o 14+y  sinnrz

But each member of (4) is analytic for all nonintegral z, and the
theory of analytic continuation permits us to come to the useful
conclusion of Theorem 8.

THEOREM 8. If 2z 18 nonintegral,

r(z)r{l —z) =

sin 7z

Our first, and extremely simple, application of Theorem 8 is the
evaluation of T($). Usez = } to get

r(PT(3) = =,
which, since T(3) > 0, yields
(5) r(3) = 4/
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18. The factorial function. Throughout this book we make fre-
quent use of the common notation

M@=+ k=1
ale + D(a+2)--(a+n—1), nz 1,
(a)o = 1, a # 0.

The function (a)., is called the factorial function. 1t is an immediate
generalization of the elementary factorial, since n! = (1),.

In manipulations with (a). it is important to keep in mind that
(e). 1s a product of n factors, starting with « and with each factor
larger by unity than the preceding factor.

Lemma 5. () = 22n<g>"<ﬁ;2h_1>n.

Proof: In the product
(a)n = ala + D(a 4+ 2)(a + 3)---(a + 2n — 1),

group alternate factors, factor 2 out of each factor on the right,
and thus conclude that

=) (45).

Lemma 6. If k 1is a positive integer and n a non-negative integer,

o () (),

The proof of Lemma 6 is like that of Lemma 5 except that the
factors of (a)x,. are grouped into % sets of n factors each, and then
k is factored out of each factor to obtain (2).

Other properties of («). will be introduced when needed, particu-
larly in series manipulations involving functions of hypergeometric
character. At present we are concerned only with the relation of
(). to the Gamma, function.

We know that T'(1 + 2) = 2I'(2). It follows that, for n a posi-
tive integer,

Ma+n) =(a4+n—DNa+n—-1)
=(a+n—Dla+n—2)T(a+n—2)

B

i

I

(a+77 — D(a+n—2) --al(a).
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THEOREM 9. If a is netther zero nor a negative inleger,

3) (a), = 1‘_0;_(7:)_70

We have already had, in equation (3), page 11, the result

. (n — 1)!ne
Me) = MmN e+ 2 e a = 1)

which can now be written in the form
— 1] pe
@) I(z) = Lim 0o DIt
n-y»wo (Z)n
Equation (4), reinterpreted in the light of Theorem 9, yields a
result of value to us in the subsequent two sections.

Lemma 7. If n s integral and z 1s not a negative integer,

. (n—=Dln
(5 eI

19. Legendre’s duplication formula. Iet us turn to Lemma 5,
page 22, and use « = 2z. We thus obtain

(22)2,[ = 22”(2)"(2 + %)n
In view of Theorem 9 we may rewrite the above as

P2z +2n)  2»T(z +n)T(z + 3 + n)
r(2z) Ir'z)T(z + 3) ’

or
I'(2z) _ r'(2z + 2n)
F(z)T(z + 1)  2°T(z +n)T(z + L + n)’

which, since the left member is independent of n, also implies

1)  T(2) _ Lim I'(2z + 2n)
T@)T(z+3)  wye2T(z + )T + 1 +n)

We next insert in the right member of (1) the appropriate factors

to permit us to make use of the result in Lemma 7. FIrom (1)

we write
'(2z2)

I@)r( + 4)

~ Lim I(2z+2n) (n—1)!n- C(n—=1)lnet o 2x(2p—1)!
T AR @n=DI@n)=  Te+n)  Tetitn) 2 n—DIJ




24 THE GAMMA AND BETA FUNCTIONS (Ch.2

which, because of Lemma 7, becomes

o on@2n — 1!
TG +3) B Fmni[(n = DIT

It follows that

' {(2z) _
T +3)

in which ¢ is independent of z. To evaluate ¢ we use 2z = § and
find that

¢,

_ r{1) 1
2r@r() 24/

c

We have thus discovered an expression for I'(2z) in terms of T'(2)
and I'(z + 3). It is Legendre’s duplication formula,

(2) A/7T(22) = 21T (2)T(z + ).

20. Gauss’ multiplication theorem. TIollowing the technique
used to discover and prove Legendre’s duplication formula, we
readily move on to a theorem of Gauss involving the product of &
Gamma functions.

Lemma 6, page 22, can be written

k
(@)ue = ko [] <3+7_1>
g=1 v n
and by Theorem 9, page 23, (a), = I'(a + n)/I'(a). We thus
obtain

In (1) put « = kz and rearrange the members of the equation to
arrive at

(2)

(1)

T(k2) _ T(kz + kn)
k k L
H F<z + g ; 1> fnk H F<z + n 4 L/—AI>

s=1

~ Lim I'{hz 4+ kn)

" o I1 F<z +n + i%—1>
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By Lemma 7, page 23, we know that

-1
24—
k

Lim (n— D!ln
npo s —1

(- +n+23)
Lim (nk — D! (nk)*: _

o> I'(kz + kn)

We now use the foregoing two limits in conjunction with (2) to
obtain

and

I'(k2)

k s—1

HF<z+——)

g=1 k +s—l

T(ketkn)  (k)=(nk—D! {7 (=D F 1

= L k=D T ZE H o =
<z+n+—) (n—1In *

_ o (k)R mk = D! k 1

]1':-1):13 knk H ,'____1

(n — D! n

(nk)*:(nk — 1!
= {‘_1;2 T [(n — 1)1 Fpker 16— Y

Therefore,
T'(k2)

; s — 1
k’”HI‘ +7_

LED!

in which c is independent of z. To determine ¢, we put z = 1/k,
use the fact that I'(1) = 1, and obtain

= 1) -1 ()

Then
1 ey (s) (k— s) ind
k202 N g=1 F E F N ]" B g=1 Sin.7r_s’
k
or
k-1 3
3) krctr+=t = [] sin i
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We can obtain ¢ once we know the value of the product on the
right in (3).

k-1
T8 k

Lemma 8. If k = 2, ] sin
s=1

ko o2et
Proof: Let o = exp(2xi/k) be a primitive kth root of unity.
Then for all z,

x"—l=(x—1)ﬁ(z—a‘),

from which, by differentiation of both members, we get

k-1

(4) kxe-t = T] (x — a) + (z — Dyg(a),
s=1
in which ¢(x) is a polynomial in z. Put z = 1 in (4) to obtain
k-1
k= H (1 — at).
But
e )« ekl ) oo ()]
ot = exp\ —— | = —exp\ - )| exp\ exp\—%
. T8 . w8
= —2 exp<T> sin -~
Hence

k—1
k= (—20)% exp[tni(k —1)] ]] sin Eﬁ = 21 [ sin =
which yields the desired result.
With the aid of Lemma 8, equation (3) can be written

etk = 2_5:1

The constant ¢ is positive because the Gamma function is positive
for positive argument. Ience

¢ = (2r) 3Dk,
This completes the proof of the Gauss multiplication theorem.

k
Treorem 10 ] I‘(z + S—-Z—l> = (2n)¥¢- -k T (k2),
g=1

21. A summation formula due to Euler. Let

P(z) =z —[z] = 4
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in which [z] means the greatest integer < x, a notation also used -
frequently in later chapters. The function P(z) is periodic,

P(z +1) = P(x),

and is represented graphically in Figure 2.

P(x)

-1

Figure 2

Euler employed P(z) in obtaining some useful summation for-
mulas, of which we use only that in Theorem 11.

TueOREM 11. If f'(z) is continuous for x = 0,

S50 = [ 1@ dz + 150 + 370 + [ P@r@ a,
i which P(z) = z — [z] — }.

Proof. First write

j;nP(:c)f'(:c) dz = é j;_‘ P(2)f'(z) dz.
Now
| Por@a = @—ktnrwas,

and we integrate by parts to obtain

j:l P(x)f'(z) dx |:(:c —k 4+ %)f(x):lz_l — j:lf(x) dx

Y + 1=~ [ @) da.
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We may therefore write
) P@rw w =50 +1 5k -0 - X [ ) aa
=13 00 + A% — [ e da

- kiof(k) - ’%f(O) -3 (72) - _fo‘}(m) de’

which is a simple rearrangement of the result in Theorem 11.

Lemma 9. For argz! < = — &, where 56 > 0,

kZ_OLog(z + k) = (& +n+3) Log(z + n)

"Plx) dx
—_—p — (5 — 1 L .
n— (z— %) Logz+ itz
Proof: Lemma 9 follows at once by applying Theorem 11 to the
function f(z) = Log (z + z).
Let us next turn to the result

— I nz
(1) P(z) = Lim -5 DI
npo ('z)n

established on page 23. In (1) put z = } and shift from =n to
(n + 1) to obtain

! H
Lim "D ),
n -y (§)n+1
which may be put in the form
M in! 92n _
Lim nl(n+ 1)in! 2 -

npe (3)(F)a(1)a2%
Now Lemma 6, page 22, yields

2%@) 1)y = (2an = (21 + 1.
Therefore we have

2 [(n 4+ DI+ D -
2) Lim On + 1)1 =V
It is legitimate to take logarithms of each member of (2) and
thus write
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(3) Lim |:(2n + 1) Log 2 — 3 Log(1 + n) + 22 Log(1 + k)
nyo

—~ > Log(l + k)] ~ 1 Log r.
k=0

We shall apply the formula of Lemma 9 to the sums involved
on the left in equation (3). The choice z = 1 in the result in
Lemma 9 yields

By Lemma 9, with z = 1 and » replaced by 2n, we get

2n

5 Logt + ) = (2 + 20) Log(1 + 20) — 20 + [ 2042
k=0

1+

Equation (3) can now be put in the form

. 3 14+n
%ﬁ[(?n-{— 1) Log2+(2n+§> Log &1 1 on

"P(z) dx P(z) d_x] 1
+2f01+x el
which leads™ to
[ 1 ANy 2+ Qn:l
I:Ti[ 2L°gg+<2n+2>L &1 ¥ 2n
“P(z) dz _ 1
+f Tiz —§Log7r.
But
- ) Log 21 21] .
,,Lffl:(?” +2> Log T2 =
Therefore we arrive at the evaluation
“P(x) dx _ 1
(5) j; T2z — 1+2Log(27r).

22. The behavior of log I'(z) for large [z|. Irom formula (3),
page 11, it follows that
! —1
I'z) = Lim n+ Dl n+1)
npo (2)ns1

)

®P(z) dz

g see the exercises at the end of this chapter.

*For proof of convergence of f
0



30 THE GAMMA AND BETA FUNCTIONS |[Ch.2

and so also that
(1) log T'(2)
= Lim [Z Log (1+k)+ (2—1) Log (1+n)— Z Log (z—i—k)]
ny-c k=0

Using equation (4) and Lemma 9 of the preceding section, we
may now conclude that, if |arg(?)| = = — §, 8 > 0,

(2) log T(2) = Lirg [(z +n + %){Log(l + n) — Log(z + n)}

1 Px) r) dx P(a:) dx:i
+(z )Log S ET T

The elementary limit
Lim [(z +n + %){Log(l +n) —Log(z+n)}} =1-—z,
ny»wo

together with equation (5) of Section 21, permits us to put (2) in
the form

o 1 _ 1 _f‘”P(x)da:'

logT(z) =1—2+ (z 2) Togz—1+ 2Log (27) I
TueorEM 12. If |arg(z)| < = — &, where § > 0,

3) log T'(z) = (z - 1) Logz — 2z + 1 Log (2x) — f"’};(a—:: Zx,

wm which P(z) = ¢ — [z] — 1, as in Section 21.

Let us next consider the integral on the right in (3). Since
fP(x) dz = 3 P z) + ¢,

we may use ¢ = —z and integrate by parts to find that

[Eade [ DD gt LR ot
= _1—2z + fomm xz) + x)i] =

Now the maximum value of [P*(z) — ] is # and, in the region
largz| £ = — 5,5 > 0,

lz +z[*zZ 2® 4 |z]3, for Re(z) = 0,
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lz 4+ z|> = [z 4+ Re(2)]* + |z]|2sin? 3, for Re(z) < 0.

It follows that
[ = sl _o( 1)
0 (z 4+ 2)* - [zl /)’

as [z] > o in |argz| < r —¢, 6§ > O.
We have shown that as |z2] — « in |argz| £ = —6, 6 > 0,

(4) logT(2) = (2 — %) Logz — z + $ Log(2x) + o(1).

Indeed we showed a little more than that, but (4) is itself more
precise than is needed later in this book.

Irom (4) we obtain at once the actual result to be employed in
Chapter 5.

THEOREM 13. As |z| — « in the region where |argz| < = — &
and larg(z + a)| = = — 5,5 > 0,

(5) logT(z 4+ a) = (24 a — %) Logz — 2z + O(1).
EXERCISES
wn @ 1 1
1. Start with O Y ,‘§1<z T n>’
prove that

2I'(22) T'(x) T'(z+3)
T@) T Teiy 218

and thus derive Legendre’s duplication formula, page 24.

2. Show that I'(3) = — (v + 2 Log 2)V/=.

3. Use Euler’s integral form I'(z) = f e~'771 dt to show that I'(z 4 1) = 2T'(2).
[
4. Show that I'(z) = Lim n*B(z, n).
n-po

5. Derive the following properties of the Beta function:
(8) pB(p, g+ 1) = ¢B(p + 1, ¢);
(b) Bp,q) = B(p + 1,9 + Blp, ¢+ 1);
(© (p+oBp,a+ 1) =B, @);
(d) B(p, 9B(p + ¢, 1) = B(g, ") B(g + r, p).

6. Show that for positive integral n, B(p,n + 1) = 2!/(D)ns1-

~3

1
. Evaluatef(l + z)P (1 — 7))t da.
-1

Ans. 2°Y1B(p, ¢).
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8. Show that for0 £k = n
_ (=D
e Bl (s v

Note particularly the special case @ = 1.
9. Show that if ¢ is not an integer,
Il —a—n) (=Dn
Il —a) = (@a

In Exs. 10-14, the function P(z) is that of Section 21.

10. Evaluate fP(y) dy. Ans. 1Pxz) — L.
d

11. Use integration by parts and the result of Ex. 10 to show that
f P@yde| _ 1

» 14z | =81 4+mn
12. With the aid of Ex. 11 prove the convergence of f —ITQ?—?
0

13. Show that
“P(x)dz & f "“P@yde _ & [y = dy
j(: N Z n B Z ol +n+y

1 + x n=0 1 + x n=_
Then prove that
1 1
oLy — P dy 1
2 LS =
L1mnj;1 oty 12

n-)pco

and thus conclude that f El%z-i—x is convergent.

0

14. Apply Theorem 11, page 27, to the function f(z) = (1 + 2)7?; let n —»

and thus conclude that
vy=1%- j: y*P(y) dy.

15. Use the relation I'(z)[(1 — 2) = =/sin 7z and the elementary result

sinzsiny = 3 [cos (z — ¥) — cos (z + y)]

to prove that
_Mor(l = ol'(c —a —Hla+b + 1 —¢)
IF'c—a)T(a+1 - {c—bI'h+1—2¢c)
T2 =ol(c=1)I{c—a-0)T'(a+b+1 =0
- ()Tl — a)T'(HIr Q1 — b)




CHAPTER 3

Asymptotic

Series

23. Definition of an asymptotic expansion. Let us first recall
the sense in which a convergent power series expansion represents
the function being expanded. When a function F(z), analytic at
z= 0, is expanded in a power series about z = 0, we write

(1) F(z) = icnz", lz] <.
Define a partial sum of the nsz)ries by
S.(2) = kZ:) crz*.
Then the series on the right in (1) represents F(z) in the sense that
(2 Lim [F(z) — S.(2)] = 0

n-y o

for each z in the region |z| < r. That is, for each fixed z the series
in (1) can be made to approximate F(z) as closely as desired by
taking a sufficiently large number of terms of the series.

We now define an asymptotic power series representation of a func-
tion f(z) as z — 0 in some region E. We write

(3) f@) ~ X az,  z—0in R,
n=(

if and only if
33
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(4) Lim ]f(Z) — S,,(Z)] =0

z>»0 in R !Zl" ’

for each fixed n, with
(5) s.(2) = X axzk.

By employing the order symbol defined in Section 13, we may
write the condition (4) in the form

(6) f(2) — s.(2) = o(zm), asz —0in R.

Here we see that the series in (3) represents the function f(2) in
the sense that for each fixed n, the sum of the terms out to the
term a.z* can be made to approximate f(z) more closely than
|z|» approximates zero, in the sense of (4), by choosing z sufficiently
close to zero in the region R.

It is particularly noteworthy that in the definition of an asymp-
totic expansion, there is no requirement that the scries converge.
Indeed some authors include the additional restriction that the
series in (3) diverge. Most asymptotic expansions do diverge, but
it seems artificial to insist upon that behavior.

Asymptotic series are of great value in many computations. They
play an important role in the solution of linear differential equations
about irregular singular points. Such series were used by astronomers
more than a century ago, long before the pertinent mathematical
theory was developed.

ExamprLE: Show that

- f le—‘ dxtt ~ nlzn r — 0in Re(z) < 0.
0 -_ n=0

Let us put
$.(z) = 2 klx*,
k=0

In the region Re(z) < 0, the integral on the left in (7) is abso-
lutely and uniformly convergent. To see this, note that { = 0 so
that Re(1 — 2t) = 1. Hence |1 — zt| = 1, and we have

f et dt = 1.
4]

“e—t dt

o 1 — zf

IA

For k a non-negative integer,
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(8) fme—‘t" dt= T(k+1) =

Hence
®e—t dt f -t dt f
T sa(2) = i ;} —tthpk dt

= f[l "]dt

From elementary algebra we have

1 — pntt

n
Z rk =
k=0

1—r

et dt _ f Ze~t(xt)+! dt
j.; 1 — — 8a(2) = 1l —zxt

from which, since |1 — a:t( = 1, we obtain

7 @

We may conclude that
®e~t dt
© | [ =L

From (9) it follows at once that the condition (4), page 34, is
satisfied, which concludes the proof. Actually (9) gives more infor-
mation than that. Let E.(z) be the error made in computing
the sum function by discarding all terms after the term nlz~.
Then |E.(z)| is the left member of (9), and the inequality (9)
shows that | E.(z)]| is smaller than the magnitude of the first term
omitted. This property, although not possessed by all asymptotic
series, is one of frequent occurrence.

The preceding example gives little indication of methods for
obtaining asymptotic expansions. Later we shall exhibit two com-
mon methods, successive integration by parts and term-by-term
integration of power series.

Extension of the concept of an asymptotic expansion to one in
which the variable approaches any specific point in the finite plane
is direct. For finite 2, we say that

, r # 1.

Therefore

= !a:]"“f e~ df, in Re(z) £ 0
0

S (n+ D!z,  inRe(x) £0

o]

f(z) ~ ZQ a.(z — )", asz — z in R,
n=
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if and only if, for each fixed n,
f(2) — sa(2) = o[z — 2]"), asz — z in R,

in which

n

$.(2) = D, ax(z — z)*.

k=0

24. Asymptotic expansions about infinity. Asymptotic series
are often used for large |z|]. We say that

(D flz) ~ i a,z7", as z — « in R,
n=20
if and only if, for each fixed n,
(2) f(2) — s.(2) = o(z~"), asz — « in R,
in which
(3) $a(2) = D @iz *.
k=0

At times, as in the subscquent example, we wish to work only
along the axis of reals. We then use (1), (2), and (3) for a real
variable z, with the region R replaced by a direction along the real
axis.

One last extension of the term asymptotic expansion follows. It
may be that f(z) itself has no asymptotic expansion in the sense of
the foregoing definitions. We do, however, write

@) S ~h@) + @) e, aszo e in R,
if and only if

f&) = h(z) <&~ s w
(5) TP R nz;ﬁ a,z=", as z in R,

and similarly for asymptotic expansions about a point in the finite
plane.

ExamprLEe: Obtain, for real z, as £ — «, an asymptotic expansion
of the error function

2 z
(6) erf(z) = —— | exp(—1?) di.
v w‘f‘:

From the fact that T'(3) = +/=, it follows at once that
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Lim erf(z) = 1.
R 2

Let us write

2 (= 2 (°
erf(z) = —— | exp(—) dt — ——| ecxp(—1) d¢
\/Wﬁ \/ﬂ‘ﬁ

2 o
=1 —-:f exp(—1%) dt.

m
Now consider the function
B(z) = f exp(—¢8) dt

and integrate by parts to get

B(z) = -%l:t-‘ exp(—t"-):lm ~ %fmw exp(—) dt

= jz~texp(—z?) — %f t~2 exp(—1?) dt.

Iteration of the integration by parts soon yields

Bz) =

1 1 ,1-3 1-3-5 (—1)"1.3-5---(2n—1)
exp(— x)[,?x “sp e om T G it

+(_1)n+11.3.5- .. (2n+1)fmt“2"“2exp(—t2) di,

2n+1
or
B 1 5 3 (2 DG
(7) (z) = 5 ex x?) Z(,) x”‘“
1 [o=]
+ (—1)n+1<—> f t-2r—texp(—12) dL.
2 n+41 z
Let
1 (2)s
8,.(z) = 52; x2k+1 k.

Then, from (7),
exp(z?) B(z) — s.(z) = (—=1)"($) 1 exp(z:z)j;mt—“—2 exp(—1) dt.
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The variable of integration is never less than z. We replace the
factor ¢-2»~2 in the integrand by ¢z—?"-3 and thus obtain

l v @
< (3)na1 eXp(Iz)f t exp(—1?) dt,

x2n+3

exp (%) B(z) — s.(2)

from which it follows that

(8) exp(r?) B(z) — s.(x)| < %);;%;
Hence
exp(z?)B(z) — s.(z) = o(z—2?), 48 T — ©,

which permits us to write the asymptotic expansion

exp(xz)B(x) ~ i (—1)"(%)7.

But erf(z) = 1 — —g: B(x). Hence

™

(9  erf(x) ~1 — L_ exp(—zx?) i (———1)—1@, T >,

I2ntl
™

Note also the useful bound in (8).

25. Algebraic properties. Asymptotic expansions behave like
convergent power series in many ways. We shall treat only ex-
pansions as z — o in some region R. The reader can easily extend
the results to theorems in which z — 2, in the finite plane.

TreorEM 14. If, as 2 — » in R,

(1) 16) ~ 3 aw

and

2 92 ~ 3 buz,

then —

(3) 5@ + 92) ~ 2 (@, + bz~
and

@ F@9@) ~ 3 3 asba sz,

n=l k=0
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Proof: Let
S,.(Z) = i akZ'—k, T,.(Z) = i bkzﬁk.
From (1) and (2) we know that
(5) f(2) = 8.(2) = o(z™),
(6) 9(z) — T.(2) = o(z),
from which
J(2) + g9() ~ [S.(2) + Ta(2)] = o(z),

yielding (3).
To prove the validity of (4), first put

n k
Q.(2) = > ab,_iz*,
0

k=0 1=

which is the “nth partial sum’ of the series on the right in (4). By
direct multiplication,

S.(2)TW(2) = Qu(2) + o(z7),
and by (5) and (6),
J(2)g(®) = 8.(2)T.(2) + o(z=).

Hence
J(2)g9(2) = Q.(2) + o(z—),

which shows the validity of (4).
The right member in (4) is the ordinary Cauchy product of the
series (1) and (2).

26. Term-by-term integration. Suppose that for real z we have

(1) Jlx) ~ };:: a,r=", zr — o,

n=0

Surely we are interested here in large x, so that an integral which it

is natural to consider is f f(x) dz. But f ao dz and f az~t dz do
v v v

not exist. Therefore we restrict ourselves to the consideration of
an expansion

2 g@) ~ 2 ax T >,
n=2
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and seek fmg(a:) dz. Of course g(z) = f(z) — ay — a1
v

Let
8.(2) = D a,x—*.
k=2
Then
g(a:) - S,,(]I) = O(CE“"), I — o,
and
[ ar - [Cow da| = [Ty - s o
<f [o(z=) | dz
— O(y~n+l)'
But
; = Sy = YT
fysn(z) dz éak VI dz ,;2(/»“—1)
Hence
« *® a"y—n+l e
3) J o aa~ STy e,

the desired result.

27. Uniqueness. Since e—= = o(z*), as z — o, for any real £,
whole classes of functions have the same asymptotic expansion.
Surely if

fl@) ~ 22 A,

n=0

then also

flx) 4+ ce—= ~ i Az,

n=0

and numerous similar examples are easily concocted.

On the other hand a given function cannot have more than one
asymptotic expansion as z — z,, finite or infinite. Letususez —
in a region R as a representative example.

TeEOREM 15. If
(1) J&) ~ i Az, 2 > = in R,

n=0
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and

@) f@) ~3 Bz, 2o o inR,

nw

then A, = B..
Proof: From (1) and (2) we have

J&) = 3 dwt = oz,

flz) — kao Bzmk = o(z™),

from which it follows that
2 (A — Byz~* = o(z™m),
k=0

or its equivalent

n

3. (Ax — B+ = o(1), z— o in R,

k=0
for each n. Therefore 4. = B, for each k. The expansion (1)
associated with z — « in a particular region R is unique. The
function f(z) may, of course, have a different asymptotic expansion
as £ — ® in some region other than R.

28. Watson’s lemma. The following useful result due to
Watson [1;236] gives conditions under which the term-by-term
Laplace transform of a series yields an asymptotic representation
for the transform of the sum of the series. For details on Laplace
transforms see Churchill [1].

Since relatively complicated exponents appear in the following
few pages, we shall simplify the printing by the introduction of a
notation similar to the common one, exp u = e*. The symbol
exp.(m) is defined by

exp.(m) = zm.

Watson’s Lemma. Let F(t) satisfy the following conditions:

1) FQ@ = i a, exp,(% — 1), n [t £ a4 8 with a, 6,7 > 0;

n=1

(2) There exist positive constants K and b such that

[F(H)] < Ke*,  fortz a.
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Then

3) 56) = [ e r @ a3 2T,
as |s| — o in the region larg s| £ ir — A, for arbitrarily small

positive A.

Note that (1) implies that F(t) is either analytic at ¢ = 0 or has
at most a certain type of branch point there.

Proof: It is not difficult to show (Exs. 1 and 2 at the end of this
chapter) that under the conditions of Watson’s lemma, there exist
positive constants ¢ and g such that for all ¢ = 0, whether ¢t = a or
t > a,

F(t) — 2 a CXP:(% - 1>l <c exp;(——i——l - 1>e‘9‘
k=1

We know also the Laplace transform of a power of ¢,

(4)

(5) f e~titm dt = T'(m + 1)s—m1 m > —1, Re(s) > 0.
0
In order to derive (3), we need to show that for each fixed n

f(s) — Z a;l’ <r>3_"/’

as |s] - « in farg s| < 37 — 4, A > 0.

ginir = 0(1)’

Now

f(s) — E a,m( >s—"f' = j;we"”l:F(t) — kZ::l a exp,(é - 1>] dt.

Hence, with the aid of (4),

f(s) — }: a;J‘( >s—k/'
< Is]"/'cf }e‘”lexp:(r—l-;i——l - 1>6B‘ dt
0
< C‘Sin/rf e—~Re(s)!expt<ﬁ__—%—~l - 1>eﬁt dt
[

<cls{~T (E“~>[RC(S) — 8] =

if Re(s) > 8. In the region |arg s| < iz — A, A > 0, Re(s) > 8

I !n/r
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as soon as we choose |s| > B(sin A)-1. Therefore, as |s| —» « in

the region |arg s| =< ir — 4,

1 = 3 aur( E)smr
k=1 r

lslﬂ/r = 0(1)7

as desired.

ExampLE: Obtain an asymptotic expansion of

ezt dt .
flx) = Tﬂ, lxl—»mm[argm{ < ir— A, 08>0
0

Note that the result will be valid in particular for real x — .
We shall apply Watson’s lemma with F(f) = 1/(1 + ). Then

=<3

Fi) = 3 (=D = 3 (= mwiem, 1] < 1,

n=1
so that we may write
FO) = Sar=,  inlf =
n=1
in which as, =0, as._1 = (-1)»*, and we have chosen r = 1,
a = %, 6 = }in the notation of Watson’s lemma.
Fort = 4,¢ > 1and 1/(1 + #) < 1, from which

We may therefore conclude from Watson’s lemma that

°°e-1:t dt e
j; e Z;l a,T(n)z="

or

fwe—zt dt (= 1)"rEn — 1)
o 142 “~ z2n—1 ’

and finally that
(6)

as |z| — « in Jargz| < 3r — 4,4 > 0.

EXERCISES

1. With the assumptions of Watson’s lemma, page 41, show, with the aid of the
convergence of the series in (1), that for 0 < ¢ £ q, there exists a positive constant
¢, such that
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F(l) - Z (437 expt<]_c —_ 1)} < ¢; exp!<ﬁi_l _ 1)
k=] r - r

2. With the assumptions of Watson’s lemma, page 41, show that fort > a,
there exist positive constants ¢; and 8 such that

iF(l) - > a exp,(k - 1)} < ¢y exp,<n—j_—1 — 1)6‘”.
k=1 r [ r

3. Derive the asymptotic expansion (6) immediately preceding these exercises
by applying Watson’s lemma to the function

s “tezt di

and then integrating the resultant expansion term by term.
4. Establish (6), page 13, directly, first showing that

me-r £t2n+2 dt

J@) = 2 (= DXz = (— 1 |

and thus obtain not only (6) but also a bound on the error made in computing
with the series involved.
5. Use integration by parts to establish that for real z — «,

f et di ~e =Y (—1)mlznl

n=0

6. Let the Hermite polynomials H,(z) be defined by

< Ha(z)tr
exp(2zt — £2) = XA:O‘?%)—

for all z and ¢, as in Chapter 11. Also let the complementary error function
erfe z be defined by

erffcz =1 —erfz = ——?—:J‘mexp(——ﬁz) dg.
NN
Apply Wapson’s lemma to the funetion F(¢) = exp(2zt — ?); obtain
exp(z — %S)ZJ:; exp(—§#%) dg ~ g.o Ha(z)s™7, §— o,
and thus arrive at the result

/T exp[ (37! — x)2erfe(3t™ — z) ~ 3 H.(2)t", t— O+

a0
7. Use integration by parts to show that if Re(a) > 0, and if z is real,
@ [oe) _1 n n
j: e dt ~ g 1;) (zD(a), xz,f") , z— o,

of which Ex. 5 is the special case @ = 1.



CHAPTER 4

The Hypergeometric

Function

29. The function F(a, b; c¢; z). In the study of second-order
linear differential equations with three regular singular points, there
arises the function
(1 Fla,b;c;2) =1+ X

n=1 (C) nn! !

(@)a(b) 2"

for ¢ neither zero nor a negative integer. In (1) the notation

@ (@i=ale+D@+2)---(a+tn—-1, nzl,
(a)o = 1, a# 0,

of Section 18 isused. We are here concerned with various properties
of the special functions under consideration; that (1) satisfies a
certain differential equation is, for us, only one among many facts
of interest.

Since

(a) n+1(b) rl+1z"+1 (C),.n!

©asa(n + DT " (@)a(b)ozr

. (a + )b+ n)z| _
h I;T Le+n)n+1) | 21,

so long as none of a, b, ¢ is zero or a negative integer, the series in
(1) has the circle [z < 1 as its circle of convergence. If either or
both of a and b is zero or a negative integer, the series terminates,
and convergence does not enter the discussion.

Lim

n-y»

45
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On the boundary |z| = 1 of the region of convergence, a sufficient
condition for absolute convergence of the series is Re(¢c—a—0) > 0.
To prove this, let

8 =1Re(c —a—>5b) >0,

and compare terms of the series

(@) (D) .2

(3) 1+ Z
with corresponding terms of the series

@ >

l

known to be convergent. Since |z| = 1 and
Lim [25(@(®)
n-yp oo (C)nn!
s (a), . (b), C(n = Dlne (n — 1)lnt+s
- }fg (n—Dne (n— 1)nd (C)n nlne—a—t
11 1@ . l _
ROROR R =1 I

because Re(¢c — a — b — 8) = 25 — & > 0, the series in (1) is ab-
solutely convergent on |z] = 1 when Re(¢ —a — b) > 0
A mild variation of the notation F(a, b; ¢; 2) is often used; it is

a, b;
o -
c:

which is sometimes more convenient for printing and which has the
advantage of exhibiting the numerator parameters a and b above the
denominator parameter ¢, thus making it easy to remember the
respective roles of @, b, and ¢. When we come to the gencralized
hypergeometric functions, we shall frequently use a notation like
that in (5).

The series on the right in (1) or in

a, b;
R = (@)a(b) a2
(6) F{ } Zo (C)m,

¢;
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is called the hypergeometric series. The special case a = ¢, b =1

yields the elementary geometric series D, z*; hence the term hyper-

n=0
geometric. The function in (6) or in (1) is correspondingly called the
hypergeometric function. Although Euler obtained many properties
of the function F(a, b; ¢; z), we owe much of our knowledge of the
subject to the more systematic and detailed study made by Gauss.

30. A simple integral form. If n is a non-negative integer,

(0)n _ T(b+ n)T(c) _ T(c) T +nT(c —b),
(), T(c+n)T(b) TOGB)T(c— b) T'(c + n)

If Re(c) > Re(b) > 0, we know from Theorem 7, page 19, and the
integral definition of the Beta function, that

T + n)F(C b) — 1b+n—1 — Pe—b—1
T(c + n) B fot =10 a.
Therefore, for |z| < 1,
e T'(c) LY c—b—1lyn
F(a, b;c; 2) = T T = ) & Z ft (1 — @) zn di
— F(C) b— 1 c—b—1 (a (Zt
- Tl - B

The binomial theorem states that

(1= g)~e= 2 (—a)(—a—D(-a—-2)---(—a—n+ 1)(—1)"y",

n!

which may be written

(1 — y)—e = ia(a + Dla+2)---(a+n— LHy»

] n!

Therefore, in factorial function notation,
a).y”
which we use with ¥ = 2¢ to obtain the following result.
THEOREM 16. If |z| < 1 and if Re(c) > Re(b) > 0,

I'(c)

Fla, b;c;2) = mf =11 — )1 — tz)—° dt.
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31. F(a, b; c¢; 1) as a function of the parameters. We know
already that if ¢ is neither zero nor a negative integer and if
Re(c — a — b) > 0, the series

(@) (b)~
(1) F(a, b;c; 1) =1 +'§ (c),.n'
is absolutely convergent.

Let 6 be any positive number. We shall show that in the region
Re(c — a — b) = 25 > 0, the series (1) for F(a, b; ¢; 1) is uni-
formly convergent. To fix the ideas, it may be desirable to think
of Re(c — a — b) = 26 > 0 as a region in the c-plane, with a and
b chosen first. It is not necessary to look on the region in that way.

The seriles of positive constants

> 1
(2) PIPEE

1s convergent because 6 > 0. We show that for n sufficiently large
and for all a, b, ¢ in the region Re(c — a — b) = 25 > 0, with ¢
neither zero nor a negative integer,

(@ab)a] _ 1
®) (c).n! ni+s
Now (see page 46)
| (@)a(b)miHs T(c) 1 ' _
I,.A;g (¢).nl! - fI‘(a)I‘(b) e ne—ab—8| 0,

since Re(c —a —b — §) =225 — 6= 6>0. Hence (3) is true
for n sufficiently large, and the Weierstrass M-test can be applied
to the series in equation (1).

TueoreEM 17. If c¢ s neither zero nor a negalive integer and
Re(c — a —b) > 0, F(a, b; ¢; 1) is an analytic function of a, b, c.

32. Evaluation of F(a, b, c¢; 1). If Re(c —a —b) >0,
Theorem 17 permits us to extend the integral form for F(a, b; c; 2),
page 47, to the point 2z =1 in the following manner. Since
Re(c — a — b) > 0, we may write

(a)

F((szcl)—z(C n'

If we also stipulate that Re(c) > Re(b) > 0, it follows by the
technique of Section 30 that
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T hd " !
F(a, b;c; 1) = 0 I‘(((c;)_. 5 ';J (Z)' jo‘tb+n—-1(1 — f)ed-1 gt
— F(C) ltb—-x(l — t)c—-b—-l(l — t)_“ dt.

T T(b)T(c — b)J,
Therefore, if Re(c — a — b) > 0, if Re(c) > Re(b) > 0, and since
¢ is neither zero nor a negative integer,

RPN — I’(_C»)“ l —1 — {}e—a—b—1

F(a, b, C, 1) = I‘(‘b)r‘((‘ - b)»[(:[b (1 t) dt
T'(c) _T)rc—a—1b)

r'b)T(c — b) I'(c — a)

_TI((c —a —b)
T (e — a)T(c — b)

We now resort to Theorem 17 and analytic continuation to con-
clude that the foregoing evaluation of F(a, b; ¢; 1) is valid without
the condition Re(c) > Re(d) > 0.

TaEOREM 18. If Re(c — a — b) > 0 and if ¢ 1s neither zero nor
a negative integer,
F(a, b; c; 1) — F(C) F((‘ —a — b).

T(c — a)T{c — b)

The value of F(a, b; ¢; 1) will play a vital role in many of the
results to be obtained in this and later chapters. Theorem 18 can
be proved without the aid of the integral in Theorem 16. For
such a proof see Whittaker and Watson [1;281-282].

ExampLE: Show that if Re(b) > 0 and if »n is a non-negative

integer,
- %n) - %’I’L =+ %} n
F[ 1] = 20,

b+ 3

By Theorem 18 we get

F"W"W+“ Lo T+ )T+ n
. I(b+ )T+ in+ 3)
b + 27

.+
I+ 3 Th + in +
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Legendre’s duplication formula for the Gamma function, page 24,
yields

T(B)T(b + §) = 2:-%4/7T(2b),
T(b + 4n)T(b + in + 3) = 20224 /7T(2b + n).
Therefore

—¥n, —n + §; : ﬂ
F{ 1] _(0).27T(2b)  2°(b),

T T(2b+n)  (2b),’

as desired.

33. The contiguous function relations. Gauss defined as con-
tiguous to F(a, b; c; z) each of the six functions obtained by increas-
ing or decreasing one of the parameters by unity. For simplicity in
printing, we use the notations

(1) F = F(a, b; ¢ 2),
(2) Fla+) = Fla + 1, b; ¢; 2),
(3) Fla—) = Fla — 1, b; ¢; 2),

together with similar notations F(b+), F(b—), F(c+), F(c—) for
the other four of the six functions contiguous to F.

Gauss proved, and we shall follow his technique, that between F
and any two of its contiguous functions, there exists a linear relation
with coefficients at most linear in 2. The proof is one of remarkable
directness; we prove that the relations exist by obtaining them.
There are, of course, fifteen (six things taken two at a time) such
relations.

Put
5 = (a)a(b) a2
” (c)an!
so that
4) F=3s
and
o~ (@ + 1) 8.,
Flat) =2 =@,

Since ala + 1), = (¢ + n) (a)., we may write the six functions
contiguous to F in the form
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_watmn y_s_a—=1_
(5) F(a+>_’§) a 5,., Fka )”Eja_1+n5ﬂ)

o b +n A b=1

-5 e, Fe-) = 2t rlos,

Flet) = 3 —S—s,  Fle—) = 3¢ Ltn,

a0 C 1 e R

7
— ], This operator
a’z> top
has the particularly pleasant property that g2+ = ne», thus making
it handy to use on power serics.

Since

We also employ the differential operator § = z<

o

(6) 0+ a)F = 3 (a+n) b,

n=0

it can be seen with the aid of (5) that

) (0 +a)F = aF(at),
(8) (0 +b)F = bF(b+),
(9) (0+c—1F = (¢c— )F(c—).
From (7), (8), and (9), it follows at once that
(10) (a — b)F = aF(a-+) — bF(b+),
and
(11) (a—c+ DF = aF(a+) — (¢ — DHF(c —),

two of the simplest of the contiguous function relations.
Next consider

gF = i n(a)n(b)ﬂzn i (a>ni-1_(b)n+12"

n=1 (C ,.n (C),.+1n!
from which
_ = (a+n)b+n) s,
(12) 6F = 2 § pawi
Now
(a +cni_(bn+ n) ot (a+b—c) + (¢ —Cai—(cn— b).

Hence equation (12) yields
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e _ < (c—a)(c—DbzXx ¢
0F—z§n6n+(a+b c)z§6n+ . 2T

On,

or
(13) (1 —2)8F = {a+ b — ¢)zF + c1(c — a)(c — b)zF(c+).
From (7) we obtain
(1 —2)8F = —a(l — 2)F + a(1l — 2)F(a+),

which combines with (13) to yield another of the contiguous {unction
relations,

(14) [(I-z)a+(a+b=—c)z]F=a(l—z)F(a+)
—c1(c—a)(c—b)zF(c+).

The coefficient of F on the left in (14) is in a form desirable for
certain later developments. KEquation (14) may be replaced by

(15) [a+B—=0c)]F=a(l—2)F(a+)—c-(c—a)(c—b)zF(c+).

Next let us operate with 8 on the series defining F'(a—). We thus
obtain

Fla—) = E (@ — 1)a(b)ner _ ) (@ = Da1(b) w2t

(c)un — D! — & (€) ppin! ’
or
—b+n
(16) ¢F(a—) = (a — 1)z E*j;
But
b+n 1 ¢~ b
c+n c+n
so that (16) becomes
Fa—) = (a = Dz 5, — DC(C — b i
n=0 =0

which, in view of (5), yields

(17) oF(a—) = (a — 1)2F — ¢ (a — 1)(c — b)zF(c+).

We return to (7) and replace @ by (¢ — 1) in it to get

(18) ¢F(a — ) = (a — D)F — (a — DF(a —).
From (17) and (18) it follows that

(19) (1 —2)F = Fla =) — ¢ (¢ — b)zF(c+).
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Similarly, since ¢ and b may be interchanged without affecting the
hypergeometric series, we may write

(20) (1 —2)F =Fb—) — ¢ e — a)zF(c+).

We now have five contiguous function relations, (19) and (20)
together with

(10) (a — b)F = aF(a+) — bF(b+),
11 (a —c+ DHF = aF(a+) — (¢ — DIF(c—),
and

(15) [a+(b—c)z]F=a(1—2)F(a4)—c'(c—a)(c—=b)zF(c+).

From these five relations the remaining ten may be obtained by
performing suitable eliminations. See Ex. 21 at the end of this
chapter.

34. The hypergeometric differential equation. 'The operator
g = z(%), already used in the derivation of the contiguous function

relations, is helpful in deriving a differential cquation satisfied by

0 w = Fla, b ¢; 2) = g————(“gc";f}l;z"-

From (1) we obtain

60+ c— Dw= M Fe= 1) () (b) 2"

n=10 (C),-.TL!
> 2(b) 2"
g c)n W(n — 1)'

A shift of index yields

1 b) n+1zn+1

6(6 +¢c — DHw = Z (@)

n=0 c),.n'
& (a+ n)b + n)(a).(b),2n
> (c)un!

= 2(0 + a)(6 + b)w.

We have shown that w = F(a, b; ¢; 2) is a solution of the differen-
tial equation J
(2) (66 +c—1) — 26 + a)(§ 4+ b)lw = 0. 6 =2
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Equation (2) is easily put in the form
(3) 21 —2w” +{c—(a+b+ DzJw —abw =0

by employing the relations 6w = zw’ and (6 — Nw = 22w".

The second-order linear differential equation (3) is treated in
many texts* and thereforec we omit details here. In order to avoid
tedious repetition, we shall, in this chapter only, refer to the text
mentioned in the footnote as IDLE.

In IDE, pages 144-148, it is shown that if ¢ is nonintegral, two
linearly independent solutions of (3) in [z] < 1 are

(4) wy = F(a, by ¢; 2)
and
(5) we=2"Fla+1—¢,b+1—¢2—c¢ 2.

We shall also make free use of Kummer’s 24 solutions of equation
(3) as listed in IDE, pages 157-158. In any specific instance,
however, previous knowledge of Kummer’s 24 solutions is not
necessary ; the desired solution can be obtained directly with the
ald of simple changes of variable performed on the differential
equation (3). See Ex. 12 at the end of this chapter.

35. Logarithmic solutions of the hypergeometric equation. Ife¢
is not an integer, the hypergeometric equation

() 21 — 2w 4+ [¢c— (@ + b+ Dz]Jw — abw =0

always has in |z| < 1 the two power series solutions (4) and (5)
of the preceding section. If ¢ is an integer, one solution may or
may not, depending on the values of @ and b, become logarithmic.
In this book we are primarily interested in the functions rather
than in the differential equations. We shall, whenever it is feasible,
avoid discussion of logarithmic solutions.

If ¢ 1s a positive integer and neither a nor b is an Integer, two
linearly independent solutions of (1) are as listed below. These
solutions may be obtained by standard elementary techniques (see
Rainville [1], Sections 92 and 94), and the details are therefore
omitted here.

If ¢ = 1 and neither @ nor b is zero or a negative integer, two
linearly independent solutions of (1) valid in 0 < |z] < 1 are

*See, for example, Chapter 6 of Rainville [2].
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(2) w; = Fla, b; 1; 2),
(3) ws = F(a, b; 1; 2)log 2
+ ;( (,fb)) “{H(a,n) + H(b, n) — 2H(, n)},
in which
@ Hm =3 1

including the ordinary harmonic sum H(l, n) = H..
If ¢ is an integer > 1 and ncither a nor b is an integer, two linearly
independent solutions of (1) validin 0 < |z} < 1 are

(5) Wy = F(a} b; ¢y Z)

and

(6) wy = Fla, b; ¢; 2)log 2
b)nz

+Z (a,n)—{—H(b,n)—H(c,n)——H(l,n)}

-2

_ nl{l — ¢)pp .
; (1 - a)rz+1(1 - b)n+12"+‘

If ¢ is an integer, ¢ £ 0, cquation (1) may be transformed by
using w = z=<y Into a hypergcometric cquation for y with new
parameters ¢’ =a+ 1 —¢, b’ =b+1—¢, and ¢’ =2 —¢c. If
neither @’ nor b’ is an integer, the y-equation can be solved by using
(5) and (6).

36. F(a, b; c; z) as a function of its parameters. We have
already noted that the series in

(1) Fla, by ¢ 9) = 3 (@

,JL'

is absolutely convergent (ratio test) for |z| < 1, independent of
the choice of a, b, ¢ as long as ¢ is neither zcro nor a negative in-
teger. Recall that (¢), = T'(¢c + n)/T(c). Consider the function
Fla, b;¢c;2) _ i (@) (D) .2"

r(c) =Tl + n)nl
in which the possibility of zero denominators on the right has been
removed. In any closed region in the finite a, b, and ¢ planes,

(2)
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M T + nin!
== 1 (a)" (b)n (n - 1) !’IV zin
= }’fﬁ (n — Dlne(n — Dn® T'(c + n) nite—e=d
I T R -
= @ T Um |pivmes| = 0 for 2l <1

Therefore, for any fixed z in |z| < 1, there exists a constant K
independent of a, b, ¢ and such that

(a)n(b) 2"

I'(c + n)n! < Kfz|.

Since D K|z|*" is convergent, the series on the right in (2) is ab-
n=0

solutely and uniformly convergent for all finite a, b, ¢ as long as
lz] < 1.

We know the location and character of the singular points of
I'(c) and are now able to stipulate the behavior, with regard to
analyticity, of the hypergecometric function with z fixed, |z| < 1,
and a, b, ¢ as variables.

TueoREM 19. For |z| < 1 the function F(a, b; c; z) is analytic
in a, b, and ¢ for all finite a, b, and c except for simple poles at ¢ = zero
and ¢ = each negalive 1nteger.

Reference to Theorem 19 will enable us to simplify many proofs
in later work.

37. Elementary series manipulations. A common tool to be
used in much of our later work is the rearrangement of terms in
iterated series. Here we prove two basic lemmas of the kind
needed. When convergent power series are involved, the infinite
rearrangements can be justified in the elementary sense. In our
study of generating functions of sets of polynomials, we sometimes
deal with divergent power series. For such series the identities of
this section may be considered as purely formal, but we shall find
that the manipulative techniques are fully as useful as when applied
to convergent series.

Lemma 10.

[e<) n

(1) S S A n) = 33 Ak — k),

n=0 k=0 n=0 k=0
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and

) géB(k, n) = ggB(k, n 4+ k).
Proof: Consider the series '

®) > 5 Ak, mtrs

n=0 k=0

in which ¢7+* has been inserted for convenience and will be removed
later by placing t = 1. Let us collect the powers of {in (3). We
introduce new indices of summation 7 and m by

(4) k=.7a n:m_J)

so that the exponent (n 4+ %) in (3) becomes m. The old indices
n and k in (3) are restricted, as indicated in the summation symbol,
by the inequalities

(5) nz0, k=0
Because of (4) the inequalities (5) become

or 0 £ j £ m with m, the exponent on ¢, restricted only in that it
must be a non-negative integer. Thus we arrive at

oo} o

© 3 3 Ak, mters = 3535 4G, m — i

= m=03=0

and the identity (1) of Lemma 10 follows by putting ¢ = 1 and
replacing the dummy indices 7 and m on the right by dummy
indices £ and n.

There is no need to use k& and n for indices in both members of
(1), but neither is there harm in it once a small degree of sophistica-
tion is acquired. We frequently employ many parameters and
prefer to keep to a minimum the number of different symbols used.

In Lemma 10, equation (2) is merely (1) written in reverse; it
needs no separate derivation.

Lemma 11.
(7) iﬂ gA(k, n) = :i;u[:Z:]A(/c, n — 2k),
and

8) S5 Bk ) = 33 Blk 1+ 2K).

n=0 k=0 n=1) A=0
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Proof: Consider the series

(9) > > Ak, n)trtek
n="0 k=0
and in it collect powers of ¢, introducing new indices by
(10) k=J, n=m-—2]
so that n + 2k = m. Since
(11) nz0 k=0,

we conclude that
m — 25 2 0, j=0,

from which 0 £ 2j < m and m =2 0. Since 0 £ j < }m and j 1s
integral, the index 7 runs from 0 to the greatest integer in m. Thus
we obtain

© - (4
(12) Z kZ Ak, n)tr+er = Z Z A, m — 27)tm,

— =0 m=0 7=
from which (7) follows by placing { = 1 and making the proper
change of letters for the dummy indices on the right in (12). Equa-
tion (8) is (7) written in reverse order.

There is no bound to the number of such identities. The reader
should now be able to obtain whatever lemmas he needs along these
lines.

Note also that a combination of Lemmas 10 and 11 yields

o o (n/2]
(13) 33 Clk, n) Z C(l:, n— k).

n=0 k=0 n= =

38. Simple transformations. It is convenient for us to write
the ordinary binomial expansion with the factorial function notation,

(1 (1= =3

and to recall the result of Ex. 8, page 32,

@ (o = F = 0z

In particular « = 1 in (2) yields

g1 = (=D!
(3) (n— k! = _(——n)k )
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Consider now the product

a,c — b; . -
(1 — z)*aF’[ _T* } _ (a) (e — b)p(—=1)kz

c: 1 -z k=g~(c)klf!(l —_ 2)k+a

With the aid of (1) we may write

a, c—b; o o . _ .

. 1—2 A=0n=0 (C)kk!ﬂ!
C?

Now (a)i(a + k), = (@).yr, so that

a,c — b;
e B I o C ol O P CO R Gond Dl

and we collect powers of z to obtain

a,¢c — b;
Y T =z | & (e =b)(a).(—1) ke
=2 F[ T-J"gg Ok — 1!

. 0 k=0
C)

_ 2 (=mule = by (a)az"
_ZZ (¢) k! nt

by (3). The inner sum on the right is a terminating hypergeometric
series. Hence

a,c—b; _, - —n,c — b; (a)zn
(1 — z)—°F 1= =Z:OF L

¢, ¢;

Since F'(—n, ¢ — b; ¢; 1) terminates, we may write

a, ¢ — b;
—a ’ ’ -z | _ & T ()T + n)(a).z
(-2 F[ .. ] = 2 e F Tl

= F(a, b; c; 2),

a result valid where both |z| < 1 and |z/(1 — 2)| < 1 (for which
see Figure 3, page 60).
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TrEOREM 20. If |z] < land |z/(1 — 2)| < 1,

a, b; a,c—b; —
(4)F|: 2 =(1—z)"“F[ T
c; c;

\ The roles of @ and b may be in-

: z-plane terchanged in (4).

! The type of series manipula-
tions involved above in arriving

at the identity (4) will be used
% frequently throughout the re-
%

A mainder of this book, and such

% ; ] steps will be taken hereafter
without detailed explanation.

Let us use Theorem 20 on

the hypergeometric function on
the right in (4). Put

!
|
|
1

Figure 3 Yy = 1 — z'
Then

a,c — b; c—a,c—b; _
Fi y| = (1 —y)bF Y
) 1=y
c; c;

Butl —y = (1 —2)tand —y/(1 — y) = 2. Hence

a,¢c—b; _, c—a,¢c—b;
F 1= = (1 — 2)—*F 2l
c; c;

which combines with Theorem 20 to yield the following result due
to Fuler.

TureoreM 21. If |2] < 1,
(5) Fla,b;c;2) = (1 —2)2tF(c —a, ¢c — b; ¢ 2).

The identities in Theorems 20 and 21 are statements of equality
among certain of the 24 Kummer solutions of the hypergeometric
differential equation. In the terminology of IDI, pages 157-138,
we have shown that IIIa = Va = IIIb. Alternate proofs of
Theorems 20 and 21, making use of the differential equation, are
left as exercises.
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30. Relation between functions of z and 1 — z. The hyper-
geometric differential equation

(1 2l — 2w +[ce— @+ b+ Dz]Jw —abw =0
has, in |1 — z| < 1, the solution
(2) w=Fla,b;a+b+1—-1¢1-—2),

as indicated in IDI, page 157, formula IVa. The solution (2) can
be obtained independently by placing z = | — ¥ in the differential
equation (1) and observing that the transformed equation is also
hypergeometric with parametersa’ = a,b’ = b, ¢’ =a + b +1—¢,
and argument y =1 — 2.

We already know that in |z| < 1, the equation (1) has the linearly
independent solutions

(3) w, = Fla, b, ¢; 2),
4) wy=z2"Fla+1—¢c,b+1-—1¢2—c 2.
Then there must exist constants A and B such that

(5) Fa,b;a+b+1—c¢1—2) = AF(a,b;c;z)
+Bz—<Fla+1—¢, b+ 1—¢2—c¢;2)

z-plane

Figure 4

is an identity in the region (Figure' 4) where both |z| < 1 and
|1 —z| < 1. If we insist that Re(1 — ¢) > 0 and let 2 — 0 from
within the pertinent region, (5) yields

Fla,b;a+b+1—c1)=4-1+B-0,
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from which, by Theorem 18, page 49,

rla+b+1—0rd —c).
Tla+1—=-0Tbh+1—2c)

Again from (5) if we let 2 — 1 from inside the region and insist that
Re(c — a — b) > 0, we obtain

1=AF(a,b;c; 1)+ BFla+1—¢,b+1—¢2—2¢1),

(6) 4 =

or, by Theorem 18,

I'(c)T(c —a — b)A
@ T'(c — a)T(c — b)

n r2 —¢)T(c—a—"5)B ~ 1

Employing (6) in (7) leads to

r2—c¢r(c—a-—>51B
(8) 'l —a)r(l — b)

T(la+b+1—-c)T(l —c)T(c)T(c —a —b)

=l - e ¥ T =T+ 1 = or( — a)T(c = b)

In Ex. 15, page 32, we showed that the right member of (8) is

equal to

9) r'2—c)rc —Nrc—a—bTra+b+1-—20
T(@)T(l — a)T(b)T(L — b)

From (8) and (9) we obtain

rla+b+1—¢)T(c—1)
I'(a)T(b) ’

(10) B =

which completes the proof of the following statement.

THEOREM 22. If |z] < 1 and |1 — 2| <1, if Re(c) <1 and
Re(c —a —b) >0, and if noneof a,b,¢c,c —a,c—b,c—a—2»>
18 an integer,

(11) F(a,b;a+b+1—c¢c'1—2)
_Iflae4+b4+1-0r —c
T Tae+1-0rbh+1—-29

Tla+b+1—¢T(c—-1)
I'(a)T(b)

- F(a, b, ¢; 2)

—+

czi=Fla4+1—c,b+1—0c¢2—c2).

The restrictions on a, b, ¢ can be relaxed somewhat, if desired.
The expression of F(a, b; ¢; z) as a linear combination of functions
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of (1 — 2) is left as an exercise; see Ex. 15 at the end of this chapter.

Theorems 20, 21, and 22 exhibit only threc of the numerous rela-
tions among the 24 Kummer solutions. For other such relations
see volume one of the Bateman Manuscript Project work, Erdélyi
[1; 106-109].

40. A quadratic transformation. In any detailed study of the
hypergeometric differential equation

(1) 2(1 — 2w + [c— (a + b+ DzJw — abw = 0,

the derivation of the 24 Kummer solutions is a natural result of the
study of transformations of equation (1) into itself under linear
fractional transformations on the independent variable. It is rea-
sonable to attempt to use a quadratic transformation on the in-
dependent variable for the same purpose. Such a study shows that
the parameters a, b, ¢ need to be related for the new equation to be
of hypergeometric character. Since differential equations are not
our primary interest, we bypass the fairly simple determination of
all such quadratic transformations and corresponding relations
among a, b, and ¢. Here we move directly to the particular change
of variables which leads to the relation we need for our later work.
In equation (1) put ¢ = 2b to get

(2) 2(1 —2)w"” + [2b — (a + b + Dz]w’ — abw = 0,

of which one solution is w = F(a, b; 2b; z). Next let

.

T (1 4z

and obtain, after the usual labor involved in changing independent
variables, the equation

3) 2

4 =z(1 -2+ x)%% +2(1 + ) (b — 2az + ba* — l.g)%%

— 4ab(1 — 2)w = 0,

of which one solution is therefore

a, b;

) ) 4I
) w = F[ ——VA]-

op, (LT

In (4) put w = (1 + z)*y to obtain the equation
6) z(1—22)y”’+2[b—(2a—b+1)z*]y’ —2ax(14+2a—2b)y =0,
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of which one solution is
a, b;

20 4z
(7) y=>10+1x) Fl: ob- 1+ x){]

The differential equation (6) is invariant under a change from z
to (—z). Hence we introduce a new independent variable v = 2.
The equation in y and v 1s found to be

_d_w[ 1_( _ §>}éy,~(_ 1>_
(8) (1 v>dzﬂ+ b+2 2a b+2 vl a\e b+§ y=0,
which has, in [v| < 1, the general solution
a,a —b+1%; a—b+%a-+1-—20b;
(9) y=AF v | + Bvi—bF v .
b+ 3; L

We now have the following situation. The differential equation
(6) has a solution (7) valid in

as long as 2b is nelther zero nor a necgative integer. At the same
time, equation (6) has the general solution* (9) with v = z*, this
solution valid in |z| < 1.

Therefore, if both |z| < 1 and < 1 and if 2b is neither

]_ 4x
(1 + z)?
zero nor a negative integer, there exist constants A and B such that

Irar b) 41, :} {ay a — b + %7 j]
(10) (1 + z)—2eF o, | = AR z?
op; T b+ 1

a—b+4+ 3, a+1—2b;
+ Bzi—F x?

3 .
§~by

In (10) the left member and the first term on the right are analytic
at z = 0, but the last term is not analytic at £ = 0 because of the

*If 2b is a positive integer, the second term on the right in (9) may or may not need
to be replaced by a logarithmic solution. If such a logarithinie solution is involved in
(9), reasoning parallel to that following equation (10) shows again that B = 0.
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factor z'-2*, Hence B = 0 and A is easily determined by using
z = 0in the resultant identity

a, by 4z a,a— b+ %7
(11) (1 + z)~F A\ AF 2|
op; b+ 3;

Thus 4 = 1, and we are led to the following result due to Gauss.

THEOREM 23. If 2b (s neither zero nor a negative integer, and if
both |z| < 1 and [4z(1 + )72 < 1,

a,b; 4r a,a—b+ 1;
(12) (1 4 x)—2¢F | = F x? )
op; (1 F 9 b+ %

41. Other quadratic transformations. TFor variety of technique
we shall now prove the following theorem without recourse to the
differential equation.

THEOREM 24. If 2b is neither zero nor a negative integer and if
lyl < jand |y/(1 —y)| <1,

a, 3a + 3; , a, b;
1) A —y-F Tl =T 2y |
b+ 3 v 2b;

Proof: Let ¢ denote the left member of (1). Then

o (b 4+ DRI — y)etrr 20 + 3k — gt
with the aid of Lemma 5, page 22. Also

v = i (a)+(3a + 3)y** = (@)g,y2*

(l_y_a_Qk:Z(a+2/\

and (a)s: (@ + 2k). = (a),.42x. Hence

==}

_ (a) +2ky"+2k
y = kZ:() ‘)Zkkb + ) k'n

Using Lemma, 11, page 57, we may collect powers of y and obtain
w (n/2]

(@).y~
2 Zo 20(b + 1)kl (n — 2k)1

We know that (n — 2k)! = n!/(—n),, and that
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(_n)Zk = 22k(—%n)k(—‘%n + %)k
Therefore we have

o [n/2]
_ (=3n)(—3n+ e (a).yr
V= T oy

[_%mﬁ_?y+%; 1}waﬂ
!
n=0 b+ %; n.

In the example on page 49 we found that the terminating hyper-
geometric function above has the value 2»(b),/(2b),. Hence

a, b;
= 20(b), (@) " [ b
v = Z 57 1 =r 2y )
(2b).n! %:
which completes the proof of Theorem 24.
In Theorem 24 put y = 2z/(1 + z)?. Then

_ 1t y _ %
Y= 0 T2 1=y 1+

i
[Ms
N‘j

1 —

and we may write

30, 3a + 3; a, b;
42 4z
(1+22)~o(1+2)2F . QJ - F[ .
bg; 1T op; I+

In view of Theorem 23 we may now conclude that

—%ay %a+ ’}; 412 a, a — b+ %;
(1 + xz)—“F m = F z? ).
b+ % b+ %

Now put 22 = z and replace b by (3 + a — b) to obtain

R T a,b;
(2) (1 +Z)"“F (—l‘q_—*; =F 2R R
14+a—0b; ?) 1+a-—b;

By Theorem 20, page 60, with appropriate substitutions for the
a, b, ¢ and 2z of the theorem,

1 1 1. 1 1 1qg—}-
v 74, 3a+3; 4z _ <l_z>~aF a, }+3a—0; —4z |
lra—p 27 142 lpqp, (=2
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We may therefore rewrite (2) in the form

bo, 3 +da—b; a, b;
(3) (1 —z)—F (TTZT = F 2|,
1+ a—b; ? 1+a—b;

which will be useful in Section 42.
Let us next return to the differential equation to establish one
more relation involving a quadratic transformation.

TueoreM 25. If a + b + 3 is netther zero nor a negative integer,
and if |z] < 1land [4z(1 — )| < 1,

a, b; 2a, 2b;
(4) F 4z(1 —x) | = F x|
at+ b+ o+ b+

The function

a,b;
(5) y=F z
a+ b+ 3

is a solution of the differential equation
d» d
©) 21 -2 +la+b+s—(@+b+ DI —aby =0
In (6) put z = 4z2(1 — z), and with some labor thus obhtain
(7 r(1—2)y"+[a+b+3—(2a+2b+ )z]y’ —4aby = 0.

Equation (7) is hypergeometric in character and has the general
solution

2a, 2b; i+a—-b5b3%1+b— a
y = AF z | + Bri—e—F x|,

a+b+ 3 t—a—b

as well as the solution

a, b;
y=F 4x(1 — x)
a+ b+ 3

from (5) above. By the usual argument it is easy to conclude the
validity of (4).
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42. A theorem due to Kummer. Let us return to equation (3)
of the preceding section and let z — —1. The result is

30, 3 + 20 — b; a, b;
2-F 1|=F -1
14+ a—b; 14+ a—b;

We can sum the series on the left and thus obtain

" r[ “ b _1} M1+ a-bry)
14a—b; 2:7(1 + 3a — b)T(3 + 3a)

Legendre’s duplication formula, page 24, yields
I(HT(1 + a) = 2°T(; + 3a)U(1 + 3a),
which may be used on the right in (1).

THEOREM 26. If (1 4 a — b) is neither zero nor a mnegative
integer, and Re(b) < 1 for convergence,

@ 7 @ b; _yl_r+a-pr
1+a—'b P(l'*'%a—b)

(1 + 3a0)
(1l 4+ a)

43. Additional properties. Further results applving to special
hypergeometric functions appear in later chapters, where we shall
find that the polynomials of Legendre, Jacobi, Gegenbauer, and
others are terminating hypergeometric series.

We now obtain one more identity as an example of those resulting
from combinations of the theorems proved earlier in this chapter.
In the identity of Theorem 25, page 67, replace a by (3¢ — 3a) and
bby (3¢ + 3a — }) to get

3¢ — ta, ¢+ 3a — §; c—a,c+a—1;
F 4x(l1 —x) | = F x|
c; c;

Theorem 21, page 60, yields

c—a,ct+a—1; a,l — a;
F x| = (1 —2)~F |,
c; ¢,

which leads to the desired result.



§43] ADDITIONAL PROPERTIES 69

THEOREM 27. If ¢ is neither zero nor a negative integer, and if both
|lz] < land |4z(1 — 2)| < 1,

a,1~a; ic— 3, 3¢+ 30 — 3;
F| z|= (1 —x)F 4x(l — x) |
¢ C5
EXERCISES

1. Show that

a,b; a+ 1,0+ 1;
d ab
EF I} = 7F x].
c; c+1;

2. Show that

b.
F[ 2a, 2b; ;J e+ b+ DI
) [ sr .
a+b+4; '

3. Show that

N ) e
Pl TGe+iarGe — da+3)

¢

4. Obtain the result

5. Obtaln the result

F[—n,a-’rn; 1J: (__1)”(1 -’ra-c),.

" (©)n
6. Show that
S L=b —n Ll (et b D
o T (Wala b= 1),

7. Prove that if g, = F(—n, a; 1 + @ — n; 1) and « is not an integer, then
gn=0forn =1,¢g = 1.

8. Show that
%[z“*‘*”F(c, b; ¢; 2)] = (a).x 'Fla 4+ n, b; ¢; 2).

9. Use equation (2), page 66, with 2z = —z, b = —n, In which » is a non-
negative integer, to conclude that
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-n, a; 30, 30 + 33 _.
F[ —x} -a- x)_“F{: (—1—_%)2]-
1+a+n; 1 4+a+n;

10. In Theorem 23, page 65, put b = v, a = v + 3, 4z(1 + z)~? = z and thus

prove that
v+ 4 o o
F zl=(01—2)# ——:/:
27; 1 + Y 1 —2z

and further that
v Y — % o 2y—1
F z ( _:;>
27; 1 + ‘\/1 — 2

11, Use Theorem 27, page 69, to show that

a1 - g je—dade—de+ }
_ _ " odz(z — 1)
—_ 1—c — — a—¢ U M
(1 —2) F[ x} (1 — 21) F[ . —w}

c:

;
12. In the differential equation (3), page 54, for
w = F(a, b;c;2)
introduce a new dependent variable u by w = (1 — 2)7°u, thus obtaining
z2(1 — 2" 4+ (1 —2)[ce + (a — b — Dz]u’ + alc — b)u = 0.
Next change the independent variable to z by putting z = —2/(1 — z). Show
that the equation for u in terms of z is

2
x(l—x)i—;‘z-}—[c—(a+c-b+1)x]%—a(c—b)u=0,

and thus derive the solution

a,¢c—b; s
w = (1 - Z)_HF . 1‘:—"2 .

13. Use the result of Ex. 12 and the method of Section 40 to prove Theorem 20,
page 60.

14. Prove Theorem 21, page 60, by the method suggested by Iixs. 12 and 13.

15. Use the method of Section 39 to prove that if both [z] < land |1 — 2] <1,
and if a, b, ¢ are suitably restricted,

a, b; a,b;
F{ z} - ?_@{_(C_%E_E%ZF[ 1 - z]
‘ Cmalle =0 o1 hpi—¢

+r(c)1“(a+b—c')(1 —2)‘"‘;”,7[ cmaenh l-z}
c—a—b+1;

I'(a)T(b)
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16. In a common notation for the Laplace transform

LFQ) = [P0 a = o0r 101 - FO.

1 a, b; a, b;
L1 :S‘F z}% = F[ z(1 — fz“‘)}
s+ 1; 1;

17. With the notation of Ex. 16 show that

Show that

I + 3n,2 4+ in;
2 2 )
L{tsinat} = Mml;{ J’j]
§ $
3 -
2
18. Obtain the results
Log (1 + 2) = zF (1, 1;2; —x),
Arcsinz = zF (4, 3; §; 2%,
Arctan z = zF(}, 1. 3; —z?).
19. The complete elliptic integral of the first kind is
e
- IJ sin? ¢
Show that K = 3xF(3, §; 1; k%).
20. The complete elliptic integral of the second kind is
- f /TR st g do.
]
Show that E = ixF(3, —%; 1; kY).
21. From the contiguous function relations
(1) (@ — B)F = aF(at) — bF(b+),
(2) (@ —c+ VDF = aF(a+) — (¢ — DF(c—),
@) [a+ (b —02)F =al — Fat) — c(c — a)(c — b)zF(e+),
4) (1 — 2)F = Fla—) — ¢ Yc — b)zF(c+),
(5) (1 —2)F = F(b—) — ¢Y(¢c — a)zF (c+), derived in Section 33,
obtain the remaining ten such relations:
6) [2a —c+ (b — a)2]F = a(l —2)F(a+) — (c — a)F(a—),
) (a+b—0o)F =a(l —2)F(at+) — (c — DF(H-),
(8) (c—a—bF =(c—aF(a—) — (1 —2)F0+),
€)) (b—a)(l—2F = (C—G)F( =) — (¢ = bBFO-),
10) [1—a+(c—b—12]F =(c— a)F(a=) — (¢ — (1 — 2)F(c—),

(

(11) (26 — ¢ + (a — b)2]F = b(1 — 2)F(b+) — (c — BYF(b—),

(12) b4 (a — )2IF = b(1 — 2)F(b+) — ¢7'(c — a)(c — b)zF(c+),
(13) (b—c+ DF = bF(+) — (c — DF(c—),

(14) [1=b+(c—a— DzlF = (c— BF(b=) — (c — 1)(1 — 2)F(c—),

(15) [e—1+(atb+1=202F = (c—1)(1— 2F(c—) — eV — n-le—bzF(c+.
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22. The notation used in Ex. 21 and in Section 33 is often extended as in the
examples
Fla—,b+) = Fla — 1,b 4 1;¢;2),
F(b+, c+) =F(a, b+ 1;¢c + 1;2).

Use the relations (4) and (3) of Ex. 21 to obtain
Fla=) — Fb—) + (b — a)zF(c+) = 0
and from it, by changing b to (b + 1) arrive at
F =Fla—,b+) + ci(b + 1 — a)2F(b+, c+),

a relation we wish to use in Chapter 16.
23. In equation (9) of Fx. 21 shift b to (b 4 1) to obtain the relation

(c—1—=bF =(c—a)fa—,b+) + (@ — 1 — b)(1 — 2)F(b+),
or

(¢ =1 —b)F(a,b;c;2)
={c—a)Fla—1L,b+1;e;2) +{a—1 -1 —2)F(a, b+ 1;¢;2),

another relation we wish to use in Chapter 16.
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BASIC HYPERGEOMETRIC SERIES

1.1 Introduction

Our main objective in this chapter is to present the definitions and no-
tations for hypergeometric and basic hypergeometric series, and to derive the
elementary formulas that form the basis for most of the summation, transfor-
mation and expansion formulas, basic integrals, and applications to orthogonal
polynomials and to other fields that follow in the subsequent chapters. We be-
gin by defining Gauss’ ; F; hypergeometric series, the . F; (generalized) hyper-
geometric series, and pointing out some of their most important special cases.
Next we define Heine’s 5 ¢, basic hypergeometric series which contains an addi-
tional parameter g, called the base, and then give the definition and notations
for .¢s basic hypergeometric series. Basic hypergeometric series are called
g-analogues (basic analogues or g-extensions) of hypergeometric series because
an . F; series can be obtained as the ¢ — 1 limit case of an ,.¢, series.

Since the binomial theorem is at the foundation of most of the summation
formulas for hypergeometric series, we then derive a g-analogue of it, called the
g-binomial theorem, and use it to derive Heine’s g-analogues of Euler’s trans-
formation formulas, Jacobi’s triple product identity, and summation formulas
that are g-analogues of those for hypergeometric series due to Chu and Vander-
monde, Gauss, Kummer, Pfaff and Saalschiitz, and to Karlsson and Minton.
We also introduce g-analogues of the exponential, gamma and beta functions,
as well as the concept of a g-integral that allows us to give a g-analogue of
Euler’s integral representation of a hypergeometric function. Many additional
formulas and g-analogues are given in the exercises at the end of the chapter.

1.2 Hypergeometric and basic hypergeometric series

In 1812, Gauss presented to the Royal Society of Sciences at Gottingen his
famous paper (Gauss [1813]) in which he considered the infinite series
ab ala+1)bb+1) , ala+1)(a+2)bb+1)(b+2) 4

1+ 2 (121
Tt T erD 2T 123 ccxniry T  1ED

as a function of a,b,c, 2z, where it is assumed that ¢ # 0,—1,—2,..., so that
no zero factors appear in the denominators of the terms of the series. He
showed that the series converges absolutely for |z| < 1, and for |z| = 1 when
Re (¢ —a —b) > 0, gave its (contiguous) recurrence relations, and derived his
famous formula (see (1.2.11) below) for the sum of this series when z = 1 and
Re (c—a—b) > 0.
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Although Gauss used the notation F(a,b,¢,z) for his series, it is now
customary to use F(a, b;c; z) or either of the notations

2Fi(a, b ¢; 2), 2B [a;b;Z}
for this series (and for its sum when it converges), because these notations
separate the numerator parameters a,b from the denominator parameter c¢
and the variable z. In view of Gauss’ paper, his series is frequently called
Gauss’ series. However, since the special case a = 1, b = ¢ yields the geometric
series

142422423 +---,

Gauss’ series is also called the (ordinary) hypergeometric series or the Gauss
hypergeometric series.
Some important functions which can be expressed by means of Gauss’

series are
(1+2)* = F(—a,b;b;—2),

log(l + 2) = zF(1,1;2; —2),
sin™! z = 2F(1/2,1/2;3/2; 2°), (1.2.2)
tan~! z = 2F(1/2,1;3/2; —2%),

e* = lim F(a,b;b;z/a),

I\

I\

where |z| < 1 in the first four formulas. Also expressible by means of Gauss’
series are the classical orthogonal polynomials, such as the Tchebichef polyno-
mials of the first and second kinds

Tn(z) = F(—n,n;1/2; (1 — 1)/2), (1.2.3)
Un(z) = (n+1)F(—n,n+2;3/2;(1 — 2)/2), (1.2.4)
the Legendre polynomials
P, (z)=F(—n,n+1;1;(1 —x)/2), (1.2.5)
the Gegenbauer (ultraspherical) polynomials
Cz) = (27;\')" F(—n,n+2XA+1/2;(1 — z)/2), (1.2.6)

and the more general Jacobi polynomials

(a+1),
n!

where n =0,1,..., and (a), denotes the shifted factorial defined by
I'(a+n)
I(a) ’
Before Gauss, Chu [1303] (see Needham [1959, p. 138], Takécs [1973] and
Askey [1975, p. 59]) and Vandermonde [1772] had proved the summation for-
mula
(c—b)n

(©n

PP (1) = F(-n,n+a+B8+1 a+1(1-2)/2), (1.2.7)

(ao=1, (a)n=uala+1) - (a+n—1)= =1,2,... . (1.2.8)

F(—n,b;¢1) = n=0,1,..., (1.2.9)
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which is now called Vandermonde’s formula or the Chu-Vandermonde formaula,
and Euler [1748] had derived several results for hypergeometric series, including
his transformation formula

F(a,bjc;2) = (1—2) %" Flc—a,c—b;c;2), |z| < 1. (1.2.10)
Formula (1.2.9) is the terminating case a = —n of the summation formula
T(c)T(c—a—10)
T(c—a)T(c—1b)’
which Gauss proved in his paper.

Thirty-three years after Gauss’ paper, Heine [1846, 1847, 1878] introduced
the series
1_a1_b 1_a1_a+1 1_b1_b+1
(=)0 00— Y- oy
(1-q)(1-¢°) (1-q(1-¢)1-¢)1-gq*")
where it is assumed that ¢ # 1, ¢ # 0,—1,—2,... and the principal value of

each power of ¢ is taken. This series converges absolutely for |z| < 1 when
lg| < 1 and it tends (at least termwise) to Gauss’ series as ¢ — 1, because

F(a,b;c;1) =

Re(c—a —b) > 0, (1.2.11)

1+

1—g¢g°
=a

ql_IH -~ (1.2.13)

The series in (1.2.12) is usually called Heine’s series or, in view of the
base ¢, the basic hypergeometric series or g-hypergeometric series.

Analogous to Gauss’ notation, Heine used the notation ¢{a,b, ¢, g, 2) for
his series. However, since one would like to also be able to consider the case
when ¢ to the power a, b, or ¢ is replaced by zero, it is now customary to define
the basic hypergeometric series by

N (69D g
B ,;) (@ Dn(c; D~ (1.2.19)
where
1, n =0,
“””:{u—@u—my~u—w%w,n=Lmn, (1:2:15)

is the g-shifted factorial and it is assumed that ¢ # ¢~ for m = 0,1,... .
Some other notations that have been used in the literature for the product
(a;9)n are (@)qn,[a]n, and even (a), when (1.2.8) is not used and the base is
not displayed.

Another generalization of Gauss’ series is the (generalized) hypergeometric

series with r numerator parameters ai,...,a, and s denominator parameters
bi,...,bs defined by

. . — Q1,02,...,0p
rFs(alaGJZa"'aara bla"'abSaz):rFs b b 7 %
ly.+-3Us

_ = (a1)n(a2)n -~ (ar)n o
= Z Al (b)n - (ba)n . (1.2.16)

n=0
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Some well-known special cases are the ezponential function
e® = oFy(—;—; 2), (1.2.17)
the trigonometric functions
sinz = 2z o Fj (—; 3/2; —2%/4),
cosz = 0;’1 E(—, 1/2; —zz/é/l),) (1.2.18)
the Bessel function
Ju(2) = (2/2)% oFi(—;a+1;—22/4)/T(a + 1), (1.2.19)

where a dash is used to indicate the absence of either numerator (when r = 0)
or denominator (when s = 0) parameters. Some other well-known special cases
are the Hermite polynomials

H,(z) = (2z)" 2Fo(—n/2, (1 — n)/2;—; —272), (1.2.20)

and the Laguerre polynomials

Ly(z) =

Generalizing Heine'’s series, we shall define an ,.¢5 basic hypergeometric
series by

1)n
M \Fi(-n;a +1;2). (1.2.21)

bry..., bs
i (a1;q)n(a2; @) - -~ (ar; Dn [(_l)nq(g)rs—rzn (1.2.22)

(G Dn(b1;Dn - (bs30)n

. _ a1,02,...,0r
T¢s(a’1aa’2""7a’rabla" saQ7z): s|: 14,2

with (3) = n(n — 1)/2, where ¢ # 0 when r > s + 1.

In (1.2.16) and (1.2.22) it is assumed that the parameters by,...,bs are
such that the denominator factors in the terms of the series are never zero.
Since

(—m), = (q—m;q)n:O, n=m+1m+2,..., (1.2.23)

an ,. F; series terminates if one of its numerator parameters is zero or a negative
integer, and an ,¢, series terminates if one of its numerator parameters is
of the form ¢~™ with m = 0,1,2,..., and ¢ # 0. Basic analogues of the
classical orthogonal polynomials will be considered in Chapter 7 as well as in
the exercises at the ends of the chapters.

Unless stated otherwise, when dealing with nonterminating basic hyper-
geometric series we shall assume that |¢g|] < 1 and that the parameters and
variables are such that the series converges absolutely. Note that if |g| > 1,
then we can perform an inversion with respect to the base by setting p = ¢!
and using the identity

1 n
(@;9)n = (a™";p)n(—a)"p~ (2) (1.2.24)
to convert the series (1.2.22) to a similar series in base p with |p| < 1 (see

Ex. 1.4(i)). The inverted series will have a finite radius of convergence if the
original series does.
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Observe that if we denote the terms of the series (1.2.16) and (1.2.22)
which contain 2™ by u,, and v, respectively, then

Uns1 _ (a1 +n)(az +n)---(ar +n)

= 1.2.25
Up, (1+n)(by +n)---(bs +n) ( )

is a rational function of n, and
Un+ 1 — (1 - alqn)(l - a‘2qn) e (1 - arqn) (_ n)l+ S—T P (1 2 26)

Un (1—g™ 1) —bign)--- (1 —bsq™)

is a rational function of ¢". Conversely, if Y oo o un and Y oo o v, are power
series with ug = vy = 1 such that u,.1/u, is a rational function of n and
Un+ 1/Vn 18 & rational function of ¢™, then these series are of the forms (1.2.16)
and (1.2.22), respectively.

By the ratio test, the ,.F; series converges absolutely for all z if r < s, and
for |2| < 1if r = s+ 1. By an extension of the ratio test (Bromwich [1959,
p. 241)), it converges absolutely for |z| =1ifr=s+1and Re [b) +--- +bs —
(a1 +--+a;)]>0.Ifr>s+1and 25# 0or r =5+ 1 and |z| > 1, then this
series diverges, unless it terminates.

If 0 < |q| < 1, the ¢, series converges absolutely for all z if 7 < s and
for |2| < 1 if r = s+ 1. This series also converges absolutely if |¢| > 1
and |z| < |biby - bsq|/|a1az - ar|. It diverges for z #£ 0if 0 < |¢| < 1 and
r>s+1, and if |g| > 1 and |z| > |b1by - - - bsq|/|@a1a2 - - - ar|, unless it termi-
nates. As is customary, the .F,; and ¢, notations are alsc used for the sums
of these series inside the circle of convergence and for their analytic contin-
uations (called hypergeometric functions and basic hypergeometric functions,
respectively) outside the circle of convergence.

Observe that the series (1.2.22) has the property that if we replace z by
z/ar and let a, — oo, then the resulting series is again of the form (1.2.22)
with 7 replaced by r — 1. Because this is not the case for the ,.¢, series defined
without the factors [(—1)"q(g)] e in the books of Bailey [1935] and Slater
[1966] and we wish to be able to handle such limit cases, we have chosen to use
the series defined in (1.2.22). There is no loss in generality since the Bailey and
Slater series can be obtained from the r = s + 1 case of (1.2.22) by choosing s
sufficiently large and setting some of the parameters equal to zero.

An .. | F, series is called k-balanced if by + by + - +b, =k+a; + a2 +
-+ 4 aryq and z = 1; a 1-balanced series is called balanced (or Saalschiitzian).
Analogously, an .. 1 ¢, series is called k-balanced if b1b; -+ - b, = q"’alaz Q1
and z = ¢, and a 1-balanced series is called balanced (or Saalschiitzian). We will
first encounter balanced series in §1.7, where we derive a summation formula
for such a series.

For negative subscripts, the shifted factorial and the g-shifted factorials
are defined by

1 1 (=1)"

(@)-n = @-D@-2-(@-n (@a—nm (1-am (1.2.27)
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(@ 0)n = 1 _ 1 (~¢fad)
T (T—ag (1 —ag7?) -1 —ag™)  (ag0)n  (¢/a;q)n
(1.2.28)
where n =0,1,... . We also define
(@:9)o0 = [ (1 — ag®) (1.2.29)
k=0

for |q| < 1. Since the infinite product in (1.2.29) diverges when a # 0 and
|g] > 1, whenever (a;¢) appears in a formula, we shall assume that |q| < 1.
The following easily verified identities will be frequently used in this book:

. _ (@5 @)oo
(@;@)n = 2™ (1.2.30)
(@'¢" " @)n = (@ @)n(—a")"q~ (), (1.2.31)
(@;@)n—t = % (—qa_l)kq(lzc)_"k, (1.2.32)
(@5 Ot & = (a5 ¢)n(aq"™; @)k, (1.2.33)
n o+ _ (a;0k(aqd" Qn
(aq";q)k = T (1.2.34)
k. _ (a‘a Q)n
(aq";Q)n—k = @D (1.2.35)
2%, _ (a;9)n(aq™; @
(a0™"; @)k @ Dor (1.2.36)
—n. v &Dn vk (B)—nk
(@™ D) @ q)n—k( 1)%q : (1.2.37)
a; a5 _,
(ag™ ™ @)k = %q 5 (1.2.38)
(a; @)2n = (;¢°)n(ag; ), (1.2.39)
(@50 )n = (a; Qn(—a; Dn, (1.2.40)

where n and k are integers. A more complete list of useful identities is given
in Appendix I at the end of the book.

Since products of g-shifted factorials occur so often, to simplify them we
shall frequently use the more compact notations

(a1,02,-..,8m;@n = (a1;Q)n(a2; Qn - - (@m; D, (1.2.41)

((1,1,(12, <o o3 Gm; Q)oo = (al;Q)oo(GZ; Q)oo tt (am;Q)oo- (1242)
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The ratio (1 — ¢*)/(1 — ¢) considered in (1.2.13) is called a g-number (or
basic number) and it is denoted by

a

[a]q = 11__qq ; g#F 1L (1.2.43)

It is also called a g-analogue, g-deformation, g-extension, or a g-generalization
of the complex number a. In terms of g-numbers the g-number factorial [n],!
is defined for a nonnegative integer n by

[n]g! = H[k]q’ (1.2.44)
k=1
and the corresponding g-number shifted factorial is defined by
-1
[algm = []la+ Klo- (1.2.45)
k=0
Clearly,
1 ' = ' 1 =
;l_IH [n]g! =nl, (}I—IH lalg = a, (1.2.46)
and
[algn = (1= @)™ (% @, limfalgin = (@)n. (1.247)

Corresponding to (1.2.41) we can use the compact notation
[at, a2, ..., amlgn = lat]gnlaz]gn - < [am]gn- (1.2.48)

Since

3 [a & ""’ar]q;n o (MY
r;) [n]lq![bzl,..-,bs]q;n [(—1) q(z)} y

= T¢8 <qal’qa2’ e qa""; qbl yrt ,qu;q, 2(1 - q)1+ s_r)’ (1'2'49)

anyone working with g-numbers and the g-number hypergeometric series on
the left-hand side of (1.2.49) can use the formulas for ,¢, series in this book
that have no zero parameters by replacing the parameters by ¢! powers and
applying (1.2.49).

As in Frenkel and Turaev [1995] one can define a trigonometric number
[a; o] by

__sin(roa)

[a;0] = (1.2.50)

sin(mo)

for noninteger values of o and view [a; o] as a trigonometric deformation of a
since lim, ,9[a;0] = a. The corresponding t5 trigonometric hypergeometric
series can be defined by

rts(@1,02,...,arb1,...,bs0,2)

= S [al’az"“’a’l‘;o-]’n n _mio myp1te—r n
B ; [n;0]![b1,- -, bs; O]n [(_1) € (2)} Zy (1.2.51)
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where |
e
[n; o]! H[k o), [a;0], = H[a—|— k; o), (1.2.52)
k=0
and
[a1,02, .-, Gm; Oln = [a1;0]n]a2;0)n -+ - [@m; O (1.2.53)
From
ewiaa _ e—wiaa qa/2 _ q—a/2 1— q (- )/2
[a;0] = el Y ——Y = 1= q a (1.2.54)

where g = €™ it follows that

(0% Dn  n(1—ay/2—n(n—1)/4
a;0, = ——=-¢q , 1.2.55
and hence
'r'ts(alaCLZa---’ar;bla"',bs;ajz)
= +0s(4",9%, .., 0""5 0", 475 g, c2) (1.2.56)
with
c= (1 _ (I)1+ s—rqr/2—3/2+ (b1+ -+ bg)/2—(ar+ -+ a,)/Z, (1257)

which shows that the ,t, series is equivalent to the ,¢4 series in (1.2.49).

Elliptic numbers [a; o, 7], which are a one-parameter generalization (de-
formation) of trigonometric numbers, are considered in §1.6, and the corre-
sponding elliptic (and theta) hypergeometric series and their summation and
transformation formulas are considered in Chapter 11.

We close this section with two identities involving ordinary binomial coef-
ficients, which are particularly useful in handling some powers of ¢ that arise
in the derivations of many formulas containing g-series:

(n;—k) _ (Z) N (g) +kn, (1.2.58)
(n ; k) _ (Z) N (l;) N E—kn. (1.2.59)

1.3 The g-binomial theorem

One of the most important summation formulas for hypergeometric series is
given by the binomial theorem:

o a)n 2 a
2Fi(a,c62) = 1 Fyla Z o (1-2)77, (1.3.1)

where |z| < 1. We shall show that this formula has the following ¢-analogue

x

(4D)n , _ (a2;9)0
dola;—;q,2) = 2" = , 2l <1, gl < 1, (1.3.2)
s ZO O (25 9)oo
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which was derived by Cauchy [1843], Heine [1847] and by other mathemati-
cians. See Askey [1980a], which also cites the books by Rothe [1811] and
Schweins [1820], and the remark on p. 491 of Andrews, Askey, and Roy [1999]
concerning the terminating form of the g-binomial theorem in Rothe [1811].
Heine’s proof of (1.3.2), which can also be found in the books Heine [1878],
Bailey [1935, p. 66] and Slater [1966, p. 92], is better understood if one first
follows Askey’s [1980a] approach of evaluating the sum of the binomial series
n (1.3.1), and then carries out the analogous steps for the series in (1.3.2).
Let us set

fal2) =) %z". (1.3.3)
n=0

Since this series is uniformly convergent in |2| < € when 0 < € < 1, we may
differentiate it termwise to get

2
-y (“TT L — afe1(2). (1.3.4)
Also -
Fi(2) — for (2 i a+ Do .,
I R —;”(GZP" !
T e

Eliminating fs4 1(2) from (1.3.4) and (1.3.5), we obtain the first order differ-
ential equation

fal(2) =

“ 1.3.6
1), (136)
subject to the initial condition f,(0) = 1, which follows from the definition
(1.3.3) of f,(2). Solving (1.3.6) under this condition immediately gives that
fa()= (1 —2z) 2 for |2| < 1.

Analogously, let us now set

oo

ha(2) = EZZ;:,Z" 2| <1, |q| < 1. (1.3.7)

n=0

Clearly, hqe(2) — fo(2) as ¢ — 1. Since hqoq(2) is a g-analogue of fo. 1(2), we
first compute the difference

ha(2) i aq, Dn n

TL
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[¢2
00

= (ag; 9)n
Z#u—a—u—aq )
= (GDn
Z GQa )n—l ps
,Q)
- a’qa n 1
—a 2" = —azh, 1.3.8
—-ad A(2), (13
giving an analogue of (1.3.5). Observing that
! — 1- f('z) _ f(qz) 1. .
() = tim £ 10 (139)
for a differentiable function f, we next compute the difference
= (439)n
ha(z) — ha(qz) = ) (" —¢"2")
,; (69
- aq - a7Q)n+1 1
; ,LZ (¢ D)n
=(1-— a)zhaq( ). (1.3.10)
Eliminating heq(2) from (1.3.8) and (1.3.10) gives
1—az
ha(z) = TS ha(qz). (1.3.11)
Iterating this relation n — 1 times and then letting n — oo we obtain
halz) = CE 8 gn2)
_ (85 9e0 gy (05 Do (1.3.12)

en. (2;9)o0
since ¢" — 0 as n — oo and h,(0) = 1 by (1.3.7), which completes the proof
of (1.3.2).
One consequence of (1.3.2) is the product formula

160(a;—3 ¢, 2) 190(b;—; ¢, a2) = 1¢0(ab;—; ¢, 2), (1.3.13)
which is a g-analogue of (1 —2)7%(1 —2)7% = (1 —2z)*®.
In the special case a = ¢ ",n=0,1,2,..., (1.3.2) gives

100(07 ™ —0,2) = (247 @)n = (—2)"¢ ™™ V2 (q/2; @)n, (1.3.14)

where, by analytic continuation, z can be any complex number. From now
on, unless stated othewise, whenever ¢=7,¢™%, ¢~™, ¢~" appear as numerator
parameters in basic series it will be assumed that j, k,m, n, respectively, are
nonnegative integers.

If we set @ = 0 in (1.3.2), we get

o0

z" 1
$0(0;—;¢,2) = = . 2] <1, 1.3.15)
10l ) ,;(q;q)n (%00 i (
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which is a g-analogue of the exponential function e®. Another g-analogue of e*
can be obtained from (1.3.2) by replacing z by —z/a and then letting ¢ — oo
to get
©  _n(n-—1)/2
060(— —i¢,-2) = Y Lt = (~210)es. (1.3.16)
= (@)
Observe that if we denote the g¢-exponential functions in (1.3.15) and
(1.3.16) by eq(2) and E,(z), respectively, then eq(2)Eq(—2) = 1, e;-1(2) =
Eq.(—qz) by (1.2.24), and

lim e,(2(1—-¢q)) = qEI}l_ E,(2(1 —q)) =€~ (1.3.17)

g—1-

In deriving g-analogues of various formulas we shall sometimes use the
observation that

(9°%; Q) oo
(239) o0
Thus

= 100(¢%—q,2) = 1Fo(a;—;2) = (1—2)"%as¢— 17. (1.3.18)

lim (%2 @)oo

=(1-2)77% |z]<1, areal 1.3.19
Jim I (1 gye, (1319)

By analytic continuation this holds for z in the complex plane cut along the
positive real axis from 1 to oo, with (1 — z) ™ positive when z is real and less
than 1.

Let A and V be the forward and backward q-difference operators, respec-
tively, defined by

Af(z) = flaz) = f(2), VS(2) = f(a'2) - f(2), (1.3.20)

where we take 0 < ¢ < 1, without any loss of generality. Then the unique
analytic solutions of

Af(z) Vy(z)

—, = f(z), f(0)=1 and v, = g9(z), g¢(0)=1, (1.3.21)
are
f(2) =eq(2(1—q)) and g(z) = E4(2(1 —q)). (1.3.22)
The symmetric q-difference operator 64 is defined by
8o f(2) = f(z4'/?) = f(zg7'/?). (1.3.23)
If we seek an analytic solution of the initial-value problem
0.f(2
WG _ ), r0)=1, (1.3.22)
q

in the form }"°7 ( a,2", then we find that

l_q n
One1 = 7 nr 1 2

an, a9 =1, (1.3.25)
q
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n=0,1,2,... . Hence, a, = (1 — q)"¢(™ ~™/4/(g; q)n, and we have a third
g-exponential function
oo 2 oo
(1 _ q)nq(n —n)/4 N 1 N
exp,(z) = 2= z (1.3.26)
! ,;, (4 9)n ,;, [n; 0!

with ¢ = €™, This g-exponential function has the properties

z

exp,—1(2) = exp,(2), ;I_I}ll exp,(z) = €7, (1.3.27)

and it is an entire function of z of order zero with an infinite product represen-
tation in terms of its zeros. See Nelson and Gartley [1994], and Atakishiyev
and Suslov [1992a]. The multi-sheet Riemann surface associated with the g-
logarithm inverse function z = Iny(w) of w = exp,(z) is considered in Nelson
and Gartley [1996].

Ismail and Zhang [1994] found an extension of exp,(z) in the form

= i qm (aq ER ,aqkTm_z;q) b™, (1.3.28)
0 m
which has the property
)
T =16, 8 =[G+ 1/D - 1= 172) (1.3.29)
where
z(z) =C(¢* +¢7%) (1.3.30)

with ¢ = —abq'/*/(1 — ¢) is the so-called ¢-quadratic lattice, and a and b
are arbitrary complex parameters such that |ab| < 1. In the particular case
¢ =e %, 0< 6 <7, 2= cosb, the g-exponential function in (1.3.28) becomes
the function

el m?2 /4
q Im 9 12m 6 m
Eq(x;a,b) = g2 ae,qg" 2 ae ;q) ™. 1.3.31
o(#ib) ,;, (@ @m ( )m (1.3.31)
Ismail and Zhang showed that
lin% E,(z;a,b(1 — q)) = exp[(1 + a® — 2a2)b], (1.3.32)
q—?

and that £,(z; a, b) is an entire function of 2 when |ab| < 1. From (1.3.32) they
observed that &, (z; —i, —it/2) is a g-analogue of e**. It is now standard to use
the notation in Suslov [2003] for the slightly modified g-exponential function

oo
q 1-—m 1-— i0
Eq(l';a) = 2’ Z ( 2q T 697_2q 2 e’ aQ)ma

(ga?;

(1.3.33)
which, because of the normalizing factor that he introduced, has the nice prop-
erty that £,(0; o) =1 (see Suslov [2003, p.17]).
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1.4 Heine’s transformation formulas for ;¢; series

Heine [1847, 1878] showed that
(0,02 ¢)oo
(€2 Qoo

where |z| < 1 and |b| < 1. To prove this transformation formula, first observe
from the ¢-binomial theorem (1.3.2) that

201(a,b569,2) = $1(c/b, z;az; g, b), (1.4.1)

(" Do = (/B5Dm 1, nym
b4 oo = (D (ba™)™

m=

Hence, for |z| < 1 and |b| < 1,

)

)

)oo - C/me pm )n
0 5 Gy 5 (e
)oo = (C/b Q)m m(azq 7Q)oo
D D o el e
2¢1(C/b Z; a’zaQab)

by (1.3.2), which gives (1.4.1).
Heine also showed that Euler’s transformation formula

2Fi(a,bc2) =1 -2 Fi(c—a,c— b 2) (1.4.2)
has a g-analogue of the form
tr(obiend) = VS g (acragabzfd. (143
254 )00
A short way to prove this formula is just to iterate (1.4.1) as follows
(b,a2;9)oo
. o — Laz: 144
2¢1(aabacaQ7z) (C,Z;q)oo 2¢1(C/b7z7azaQ7b) ( )
(c/b,bz;q)oo
=—— == bz/c, b; bz; b 1.4.5
(C,Z;Q)oo 2¢1(a Z/C) s ZaQac/ ) ( )
(abz/c;q)

Y P 2¢1(c/a, c/b;c;q,abz/c). (1.4.6)
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1.5 Heine’s g-analogue of Gauss’ summation formula

In order to derive Heine’s [1847| g-analogue of Gauss’ summation formula
(1.2.11) it suffices to set z = ¢/ab in (1.4.1), assume that |b| < 1, |c/abl < 1,
and observe that the series on the right side of

2¢1(a, b;¢;q,¢/ab) = % 160(c/ab;—;q,b)

can be summed by (1.3.2) to give

(¢/a,c/b; @)

201(a,b; 659, ¢/ab) =~ =5 S

(1.5.1)

By analytic continuation, we may drop the assumption that [5| < 1 and require
only that |c/ab| < 1 for (1.5.1) to be valid.

For the terminating case when a = ¢, (1.5.1) reduces to

(/b @)n

201(¢7 ", b;¢;9,¢47 /b) = ()

(1.5.2)

By inversion or by changing the order of summation it follows from (1.5.2) that

(c/b;q)n
(e Qn

Both (1.5.2) and (1.5.3) are g-analogues of Vandermonde’s formula (1.2.9).
These formulas can be used to derive other important formulas such as, for
example, Jackson’s [1910a] transformation formula

201(a7 ", b5 65¢,9) = =" (1.5.3)

_ (a,0) o~ (a,¢/b30)k k()
b; —b 2
2¢1(a, ;64,2 = ) ’; (g.c.az 08 2)"q
_ (az,9) e
e 202(a, ¢/b; c,az;q,bz). (1.5.4)

This formula is a ¢g-analogue of the Pfaff-Kummer transformation formula
2 Fi{a,byc2) = (1 —2)"% 2 Fi(a,c—byc;2/(z — 1)). (1.5.5)

To prove (1.5.4), we use (1.5.2) to write

_ i c/b Qn (bq )n

— (6Dn
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and hence

B S CLIS S G
k=

(4,6 9)n

n=0

=33 ey

k nQaC(I)

_ i i (@5 ke (/i@ (v ko (3)
k=

3 (G DR(e: 6 Dn

< (a,¢/b; >
=3 e b ® 3 G

aQ)n Pt q; 9

_ (a2, @)oo = (@, ¢/b;@)n Ty
(239) o0 = (q,c,az;q)n( bz)"q

by (1.3.2). Also see Andrews [1973]. If a = ¢~ ™, then the series on the right
side of (1.5.4) can be reversed (by replacing k by n — k) to yield Sears’ [1951¢]
transformation formula

201(¢7 ", b;¢,4, 2)

c/b;@n [(b2\" n 1 den. g ~1 1-n
=%<?) 30207 ", q/z,¢ 7 g T b g T, 050, 9).  (1.5.6)

1.6 Jacobi’s triple product identity, theta
functions, and elliptic numbers

Jacobi's [1829] well-known triple product identity (see Andrews [1971])
o0
(2a%,q3 /2, ;0000 = 3 (—1)"q" 722", 2 #£0, (1.6.1)
n=—oc
can be easily derived by using Heine’s summation formula (1.5.1).
First, set ¢ = bzq? in (1.5.1) and then let b — 0 and @ — 0o to obtain

2

X 1yn,n/2 "
> ((lq)Tq)nZ” = (2¢%;¢)oo- (1.6.2)

n=0

Similarly, setting ¢ = 2¢ in (1.5.1) and letting ¢ — 0o and b — 0o we get

1
Z (¢,2q;q ) T (g D)oo (1.6.3)

n=0
Now use (1.6.2) to find that

1 1
(2¢%, q2/Z'<1)

© m+nq(m +n?)/2

,; = (G Dm(GDn
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© n2/2 oo k2
-3 (-D"q Y q 7+

n
CHS — (¢, 4™ ;@)
k=0

n=0
o0 2 o0 2
(=Drg™/* _ i k
+Y ey — g 1.6.4
= (&9 = (@, 4™ )k (164

Formula (1.6.1) then follows from (1.6.3) by observing that

> L _ 1 1

1
q .
(@ Dn f (@0 5Dk (G Dn(@ 5D (9o

An important application of (1.6.1) is that it can be used to express the
theta functions (Whittaker and Watson [1965, Chapter 21])

91 (z,q) =2 i(—l)"q(’” /9% gin(2n + 1)z, (1.6.5)
n=0
B2 (z,q) =2 i g 1/2* cos(2n + 1)z, (1.6.6)
n=10
93(z,q) =1+2 i q" cos2nz, (1.6.7)
n=1
Da(z,q) =1+2 i(—n"q"z cos 2nz (1.6.8)
n=1

in terms of infinite products. Just replace ¢ by ¢* in (1.6.1) and then set z
equal to ge?’®, —qe?t®, —e?¥* €21 respectively, to obtain

V1 (z,q) = 2¢"*sinz H (1—¢™(1 —2¢""cos 2z + ¢*™), (1.6.9)

n=1

¥, (x,q) = 2¢"/* cosz H (1—g*)(1+2¢*" cos2z + ¢*"), (1.6.10)

n=1
93(z,q) = H (1 —@™)(1+2¢°" ! cos 2z + ¢*"2), (1.6.11)
n=1
and
o0
Y4 (z,q) = H(l — ™) (1 - 2¢°" ! cos 2z + ¢*"72). (1.6.12)
n=1
It is common to write 9 (z) for dx(z,q), k=1,...,4.

Since, from (1.6.9) and (1.6.10),
lir% 2_1q_%191 (z,q) =sinz, lir% 2_1q_%192 (z,q) = cosz, (1.6.13)
g— g—

one can think of the theta functions ¥ (z, q) and 9;(x,q) as one-parameter
deformations (generalizations) of the trigonometric functions sinz and cosz,
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respectively. This led Frenkel and Turaev [1995] to define an elliptic number
[a; 0, 7] by

91 (roa,e™)
% (mo,emim)
where a is a complex number and the modular parameters o and 7 are fixed
complex numbers such that Im (7) > 0 and o # m + nr for integer val-
ues of m and n, so that the denominator ¥;(no,e™") in (1.6.14) is never
zero. Then, from (1.6.9) it is clear that [a;0,7] is well-defined, [—a;0,7] =
—la;0,7], [1;0,7] =1, and

a;0,7] = (1.6.14)

lim [a;0,7] = —51.11(71'0a)
Ip 7—oo SlIl(Tl'O')

= [a; 0]. (1.6.15)
Hence, the elliptic number [a;0,7] is a one-parameter deformation of the
trigonometric number [a; o] and a two-parameter deformation of the number
a. Notice that [a;0,7] is called an “elliptic number” even though it is not an
elliptic (doubly periodic and meromorphic) function of a. However, [a;0,7]
is a quotient of ¥; functions and, as is well-known (see Whittaker and Wat-
son [1965, §21.5]), any (doubly periodic meromorphic) elliptic function can be
written as a constant multiple of a quotient of products of ¥, functions. The
corresponding elliptic hypergeometric series are considered in Chapter 11.

1.7 A g-analogue of Saalschiitz’s summation formula

Pfaff [1797] discovered the summation formula

(c—a)(c—b),
(n(c—a—1b),’
which sums a terminating balanced ; F>(1) series with argument 1. It was
rediscovered by Saalschiitz [1890] and is usually called Saalschiitz formula or

the Pfaff-Saalschiitz formula; see Askey [1975]. To derive a g-analogue of
(1.7.1), observe that since, by (1.3.2),

3P (a,b,—n;c,1+a+b—c—mn;1) = n=0,1,..., (1.7.1)

(abz/c Do o ab/c q k
R i S
-0
the right side of (1.4.3) equals
i f: ab/c Qrlc/a,c/b;@)m (a_b)mzk+m
P k(0,6 Dm c ’
and hence, equating the coefficients of 2™ on both sides of (1.4.3) we get

2”: (¢ " ¢/ac/bia); ;  (a,b;9)n

“ (g,¢,c4'"/ab; q); (c,ab/c;q)n’

Replacing a, b by ¢/a, c/b, respectively, this gives the following sum of a termi-
nating balanced 3¢, series

_ . b q)
P N CLULAT L 1.7.2
3¢)2(a7 »qd ;¢C,a0C T q aqaq) (c,c/ab; q)n ) y s ) ( )
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which was first derived by Jackson [1910a]. It is easy to see that (1.7.1) follows
from (1.7.2) by replacing a, b, c in (1.7.2) by ¢%, ¢%, ¢°, respectively, and letting
g — 1. Note that letting a — oo in (1.7.2) gives (1.5.2), while letting a — 0
gives (1.5.3).

1.8 The Bailey—Daum summation formula

Bailey [1941] and Daum [1942] independently discovered the summation for-
mula

iy ad. a 2 /p2. 2
261 (a, b ag/bs g, —q/b) = q,z;g (iq/qb-/;);oq Joo (1.8.1)

which is a g-analogue of Kummer’s formula

I(1+a—bT(1+ Lta)

I(1+a)l(1+21a—b)
Formula (1.8.1) can be easily obtained from (1.4.1) by using the identity

(1.2.40) and a limiting form of (1.2.39), namely, (a;q9)0o = (@,0¢;¢*)c0, tO
see that

2F1 (a,b;1+a—b;—l) = (182)

2¢1(a,b;aq/b;q, —q/b)

_ (6, -49 —a/bi—da.a
— @t _q/b_q) 201(q/b,—a/b; ¢, a)

__ (s o (g /bz,q )n 4
N (aq/b Q/b 9)oo nz%
(@,-¢9)x  (ad’ /bz’q ) by (1.3.2)

~ (0a/b, =4/t 00 ()
_ (% 9(ag,a¢’ /P ¢ )
(aq/b, —q/b; 4)oo

1.9 g-analogues of the Karlsson—Minton
summation formulas

Minton [1970] showed that if ¢ is a negative integer and m;, m;,..., m, are
nonnegative integers such that —a > m; + --- + m,., then

a,b,bl—i—ml,...,br—}—mr.l

r+2Fr+1 b+1,b1,---,br
_ TG+ DLA = 0) (by — D)y =+ (br = D)m, (1.9.1)
T(1+b—a) ®1)my - (b)m, -

where, as usual, it is assumed that none of the factors in the denominators
of the terms of the series is zero. Karlsson [1971] showed that (1.9.1) also
holds when q is not a negative integer provided that the series converges, i.e.,
if Re(—a) > my + -+ +m, — 1, and he deduced from (1.9.1) that

a,by +mi1,....br +my 1

re1 b bl,...,b

=0, Re(—a)>mi+- - +m, (1.9.2)
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—(m1‘I‘""I‘m'r);bl+mla"'ab7‘+m"'.1
bi,....by ’

_ (qymat s (m+---+mp)!
(bl)m1 U (br)mr
These formulas are particularly useful for evaluating sums that appear as so-
lutions to some problems in theoretical physics such as the Racah coefficients.
They were also used by Gasper [1981b] to prove the orthogonality on (0, 2m)
of certain functions that arose in Greiner’s [1980] work on spherical harmonics
on the Heisenberg group. Here we shall present Gasper’s [1981a] derivation of
g-analogues of the above formulas. Some of the formulas derived below will
be used in Chapter 7 to prove the orthogonality relation for the continuous
g-ultraspherical polynomials.
Observe that if m and n are nonnegative integers with m > n, then

re1Fy

(1.9.3)

o (0r g™ @n
hgbg ) =
26107, 97 "5 br3 0, Q) G &
by (1.5.3), and hence
al;"'aa"r‘;b'rqm,
T+1¢T|:b1,...,b7-_1,b 7Qa2:|

— (ar,...,a - q ;9)
_ 1y---28Gr;4 n n a ’ k mn+ k
_Z(Q;bh . b'r 1,4 ? Z BCEET

n=0 k=0 br; Q)i

oo m m k
_ ZZ b (11,..- yary g )n(q aQ)b Zn(_l)kqmn+ k—nk+ (2)

n=0 0 1yere 'r 1;:49 ) ( q)’n k( Taq)k

k=
s (q aala-”aa'r;Q)k myk —(k)
= —2q q 2
]; (Q7b17"'ab'r;Q)k ( )

k k
a1 g-,...,arq m—k
X — 3G, 2 z| < 1.
'r¢'r l[blqk,---,br—lqk’q, q :|a | |

(1.9.4)

This expansion formula is a g-analogue of a formula in Fox [1927, (1.11)] and
independently derived by Minton [1970, (4)].
When r = 2, formulas (1.9.4), (1.5.1) and (1.5.3) yield

a, ba bl qm -1 1m:| (Qa bQ/a’a Q)oo
; ,a, = —_——
o I B e
(9,09/3; @)oo (b1 /b; @)
_ b, 1.9.5
(bg,4/0; @)oo (b1; O)rn. (1.9.5)
provided that |a~!¢'~™| < 1. By induction it follows from (1.9.4) and (1.9.5)

g ", bibiig,q)

that if my, ..., m, are nonnegative integers and |a~!q!~(™1* ~*ms)| < 1, then
a,b,big™, ... brg"" 1 _1—(my4 ot mp)
7‘+2¢7‘+1|: bq,bl,--~ br 34,4 q

_ (Q7 bQ/a; Q)oo (bl /b; Q)ml s (br/b; Q)mr prmit et m (1 9 6)
) 9.

(bg,q/0;5 Q)00 (b1;@)m, -+ (br; Do,
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which is a g-analogue of (1.9.1). Formula (1.9.1) can be derived from (1.9.6) by
replacing a,b, by, ..., b, by ¢, ¢%,¢",...,q", respectively, and letting ¢ — 1.
Setting b, = b,m, = 1 and then replacing r by » + 1 in (1.9.6) gives
my m,
r+19r |:a’ blqb . 'l’)qu 4, a_lq_(m1+ o mr):| =0, |a—1q—(m1+ o mr)| <1,
1y++-5Ur

(1.9.7)
while letting b — oo in the case a = ¢~ ™1+ ~+ ™) of (1.9.6) gives

—(mi+-+me) poama o g
r+l¢r q 01977, y 0rq ,q,l
bi,... by

(—1)(:1+q--)-+ m, (qig)n;l; ot Mg q_(m1+ et M) (Mt ot Mt 1)/2’ (1.9.8)
159)mq * " \Or;4)m,

which are g-analogues of (1.9.2) and (1.9.3). Another ¢g-analogue of (1.9.3) can
be derived by letting b — 0 in (1.9.6) to obtain

2151 My
r+1¢r |:(1, blqbl ag)b’l‘q ;q,a—lql—(m1+---+ m,.):|
gy Ur

(_1)m1+ et my (q; Q)oob;nl . b:n, (721)4— , (7731‘)

2/ D)oo (01 Dy -~ (brs Dy ’

(1.9.9)

when |a~1g! ~(mt -t ma| <1,
In addition, if a = ¢™™ and n is a nonnegative integer then we can reverse
the order of summation of the series in (1.9.6), (1.9.7) and (1.9.9) to obtain

", b,big™, .. begr
re2¢rir | bqlgl 0 g
_ V(& Dn (b1 /b5 @), - - (br /b5 @),

, n>m;+---+m, (1.9.10
(bQ§ q)n(bl;q)rm U (br; Q)mr : ( )

(g™, byg™, ... brg™r |
e 16r q ;lb({ ) b’ q 1q,q| =0, n>my+--+m,, (1‘9_11)

and the following generalization of (1.9.8)

r —n m1 My T _1 n . —n(n+ 1)/2
" big™, . beg _ EDMg9)ng (1.9.12)

™ T ; ’1 )
<19 i bi,... by “7 ;D - (Brs o

where n > m; + --- + m,, which also follows by letting b — oo in (1.9.10).
Note that the b — 0 limit case of (1.9.10) is (1.9.11) when n > my + - - - + m,
and it is the a = g~(™1* "+ ™) gpecial case of (1.9.9) when n=m; +---+m,.

1.10 The ¢g-gamma and ¢-beta functions

The g-gamma function

_ 89w 4 1o
T,(z) = (qw;q)oo(l Q"% ,0<q<]1, (1.10.1)
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was introduced by Thomae [1869] and later by Jackson [1904e]. Heine [1847]
gave an equivalent definition, but without the factor (1—g)! ~®. When z = n+1
with n a nonnegative integer, this definition reduces to

Ton+1)=11+q)(1+q+¢*)---(1+q+---+g""), (1.10.2)

which clearly approaches n! as ¢ — 1~. Hence I'j(n+1) tends to I'(n+1) = n!
as ¢ — 17. The definition of I'y(z) can be extended to |g| < 1 by using the
principal values of ¢* and (1 — ¢)! =% in (1.10.1).
To show that
1i1}1 Fy(z) =T(x) (1.10.3)
g—1-
we shall give a simple, formal proof due to Gosper; see Andrews [1986]. From
(1.10.1),

Mo+ 1) = (E0% (1 g
-y -grl)E
= nl:[l (1 . qn+ :1:)(1 _ qn)a:

Hence

lim rq(x+1)=ﬁ n ("H)z

1- n T n
- n=1 +

T [z—lﬁ (1+%)_1 (1+%>z

=zl(z)=T{z+1)

by Euler’s product formula (see Whittaker and Watson [1965, §12.11]) and the
well-known functional equation for the gamma function

T(z+1)=zT(z), T(1)=1. (1.10.4)

For a rigorous justification of the above steps see Koornwinder [1990]. From
(1.10.1) it is easily seen that, analogous to (1.10.4), I';(z) satisfies the func-
tional equation

1—4"
l—g¢

flz+1)= flz), f@)y=1. (1.10.5)
Askey [1978] derived analogues of many of the well-known properties of the
gamma function, including its log-convexity (see the exercises at the end of
this chapter), which show that (1.10.1) is a natural g-analogue of I'(x).

It is obvious from (1.10.1) that T'y(z) has poles at ¢ = 0,—1,—2,.... The
residue at £ = —n is
. . (1 _ q)n+1 . T _l_ n
zgn_ln(l' + n)rq(z) - (1 — q_")(l — q“") . (1 — q_l) zgn—ln 1—gotn

(1 _ q)n+ 1
_ _ 1.10.
(g~ q)nlogg™! (1.10.6)
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The g-gamma function has no zeros, so its reciprocal is an entire function with
zeros at £ = 0,—1,—2,... . Since

1 ) 0 1— qn+ T
R [ (= S 1.10.7
the function 1/T'4(z) has zeros at * = —n £ 27ik/logq, where k and n are

nonnegative integers.
A g-analogue of Legendre’s duplication formula

r'(2z)T (%) = 22*~Ip(2)r (m + %) (1.10.8)
can be easily derived by observing that
L@l (+3) (4658w (1= )2
Tp(3) (@ @™ 507 oo
(9o 241-2 1-2
g oo( ) (1+q) q(2z)
and hence
1 1
[, (2z)T (5) = (14 ¢)** 'Tp(2)Ty (a; + 5) . (1.10.9)

Similarly, it can be shown that the Gauss multiplication formula

1 1 -1
['(nz)(2r)m=D/2 = pm*=31(z)T (w + —) ..T (x + 2 ) (1.10.10)
n
has a g-analogue of the form
1 2 n—1
r r.(=)T-{—=)---T,
o ()7 () ()
n—1ynz—1 1 n—1
=14+qg+---+q¢"7) T (2)Ty x—i—ﬁ Tl + - (1.10.11)

with = ¢"; see Jackson [1904e, 1905d]. The g-gamma function for ¢ > 1 is
considered in Exercise 1.23. For other interesting properties of the g-gamma
function see Askey [1978] and Moak [1980a,b] and Ismail, Lorch and Muldoon
[1986].

Since the beta function is defined by

L(z)C'(y)
Blz,y) = —=2 ) 1.10.12
@9 = Fior g (110.12)
it is natural to define the g-beta function by
L, (z)T
By(z,y) = 2 Da) (1.10.13)

Fq(m +9) ’



1.11 The g-integral 23

which tends to B(z,y) as ¢ — 17. By (1.10.1) and (1.3.2),

Bylo,y) = (1 - ) (LL i
(6D = (%5 Dn e
=000 “— (g;q)n
=(1-¢q) i (¢™ 1’q)ooq”z, Rez, Rey > 0. (1.10.14)

(@™ ¥ @)oo

This series expansion will be used in the next section to derive a g¢-integral
representation for By(z,y).

n=0

1.11 The ¢-integral
Thomae [1869, 1870] and Jackson [1910c, 1951] introduced the g-integral

1 oc
| 1o dat=a-03 s (111.1)
n=0
and Jackson gave the more general definition
b b a
[ @ de= [ rw e [ s dp (L11.2)
where -
/ f®) a(1-q) Y flag")g". (1.11.3)
n=0

Jackson also defined an integral on (0, 00) by

/ f(t) dgt = (1—q) Z flq (1.11.4)

n=—oc

The bilateral g-integral is defined by
/ F(t) dgt = (1 —q) Z[f )+ f(—g™)] ¢" (1.11.5)

If f is continuous on [0, a], then it is easily seen that

hm f ) d t—/ () (1.11.6)

and that a similar limit holds for (1.11.4) and (1.11.5) when f is suitably
restricted. By (1.11.1), it follows from (1. 10 14) that

1
1 (g9
By(xz,y) = t* dqt, Re x>0, 0,-1,-2,..., (1.11.7
o) /0 (te¥; @)oo v7 ( )

which clearly approaches the beta function integral

1
B(z,y) =/ t* ' (1-t)¥ ' dt, Rex, Rey >0, (1.11.8)
0
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as ¢ — 17. Thomae [1869] rewrote Heine’s formula (1.4.1) in the g-integral
form

it (1.11.9)

T'y(e Vo (t2q% ty;
z(bl(q“,qb;qc;q,z) — q( ) / tb 1 ( q q Q)oo d
0

Fq (b)Fq (C - b) (tz’ tqc—b; Q)oo
which is a g-analogue of Euler’s integral representation

(c) "o —b—1 -
— |t 1-1¢)° 1—tz) % dt 1.11.10
S OTvrem ) AR CE O P AN (BERT)

where |arg(l — 2)] < w and Rec¢> Re b > 0.
The ¢-integral notation is, as we shall see later, quite useful in simplifying
and manipulating various formulas involving sums of series.

2 F1(a,bc2) =

Exercises

1.1 Verify the identities (1.2.30)—(1.2.40), and show that

) (ag™™;q)n = (¢/a;@)n (—g) g 2),
i e (¢/a;@)nik ( a\" —nk—(3)
W @ 0 = T gk ( q) g :
(iif) (qa?,—qa?;q)n _ 1—ag™

(a%,—a%;q)n 1—a ’
(iv) (a3¢)2n = (a7, —a?, (ag)%, —(aq); ¢)n,
(v) (a3 {0/ @)—n = (—a)"q?),
(vi) (0, -0, —¢*¢*)oo = L.

1.2 The g-binomial coefficient is defined by
[n] __ (@9
kle (G Dk On—k
for k=0,1,...,n, and by

[a] _ @) Ty(e+1)
Bl, (¢:4°* 150 oo Te(B8+ Dlg(a—B+1)

for complex « and J when |¢| < 1. Verify that

(i) [Z:f[nik]q’

i al _ (@D avk (5
() {k-q (4 9)x (=)

7

. [k+a] (™o
@ | )= @
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n
. . o n k k
¢)  an=0[}] (2%,
k=0
when k and n are nonnegative integers.

1.3 (i) Show that the binomial theorem

(a+b)" = zn: (:) aF bk

k=0
where n = 0,1, ..., has a g-analogue of the form
n
n
(@iado =3 | 1| (00
k=0 q

= g:o [Z] . a™ " (a; @)k (b; Q)n—x

(ii) Extend the above formula to the g-multinomial theorem

(a1a2 cc Oy l;q)n

_ n k1 ki+ ko ki+ kot -+ k
= E : k L ay as g "
15--+yMm q

0<ky,..., 0<km
ki+ +km<n

X (a1;9)k, (025 Dy * * * (@m Do (@t 15 Dn—or+ -+ krm) s
where m=1,2,..., n=0,1,..., and
(4 Dn

n
[kl,---,km]q (G Dk (G Db (G D (hrt -t k)
is the g-multinomial coefficient.

1.4 (i) Prove the inversion formula

Aly...,0p
34, 2
T¢S|:b17 --ab 9 :|

—1. -1 n
_Z a"'aar 4 )'n, <a1"'a1‘z)
_1 AT b g ), \ b bsg

1 a

(i) By reversing the order of summation, show that

.0 —-n
r+1¢s |: T’bq ,q,Z:|
la“-a s

R () (o)

n -n -n n k
XZ 1 /b17 - q 1 /bsaq )k( 'bsq+1)
(@:¢""/a1,...,¢" ™ /ar;q) ai-Gr 2

k=0

25
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when n=0,1,....

(iii) Show that
a ,...,ar
r+1¢1‘ ; b+1 ;q’qz:|
bi,..., b,
_ (al,...,ar+1;Q)oo /1 tz_l(qt,blt bt‘q)
(l_q)(q’blaab'mq)oo (alt,...,ar_,.]t q)

when 0 < ¢ < 1, Re z > 0, and the series on the left side does not
terminate.

dgt,

1.5 Show that

(¢, 54" @)m, b/c q)n z": NI

k
= q”; @)m
(b; ) In = (g, cq‘ "/b;q)k (ea’9)

1.6 Prove the summation formulas (bz 2)
: —-n 1-n. 32..2 2\ _ 47 )n _(")
b =22 ",
(1) 2¢1(q »q yq0 g9, q ) (bz,q)nq )
(i) 1¢1(a;¢;9,¢/a) =

(¢/a; @)oo
(iii) 2¢0(a,¢™™; —;4,4" /a) = a7 ",

(¢ @)oo
. g 2
() Z% @92 (@9’

—1.,-1
() 1ol =3, 2) = H o> 1, fasp! < 1,
. o (a/e,b/e;p oo
(VI) 2¢1 ((Z,b, ap,p ) (1/6 ab/c p_l)

1.7 Show that, for |z]| < 1,

, ol > 1

Gy

2 P =(1
2¢1(a aaqaa7Qaz) ( +GZ) (z;Q)oo

1.8 Show that, when |a| < 1 and |bg/e?| < 1,
2¢1(a?,a® /b;b; ¢, bg/a®)
(@, ;%) [(b/a;9)s0 N (=b/a;q)oo
2(b,bq/a%;¢*)oo | (8;9)co (—8;9) 0
(Andrews and Askey [1977])

1.9 Let ¢(a,b,c) denote the series 2¢1(a, b; c; q, z). Verify Heine’s [1847]
g-contiguous relations:
(1-—a)(1-0)

(i) ¢(a,b,cq™!) — ¢(a,b,¢) = sz¢(aq, bq, cg),

() ¢lag, ) — 9(a,b,) = az 1~ ¢(ag, by ca),
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(1-0)(1--c/a)

(iii) B(ag, b, cq) — d(a, b,c) = az ¢(aq,bq, cq),

(o)1 —co
1 —
(iv) ¢(aq, bq_l,c) —¢(a,b,c) = az%daq, b, cq).
1.10 Denoting »¢1(a,b;c; q, 2 ) o1 (ag™!,b;c,q,2), 201 (a, bg™! G 4 z)
and 2¢1(a,b;cqt'5q,2) b ,qb(aqil), ( *1) and ¢(cq™!), respectively,

show that

() b(1 — a)¢(ag) — a(1 — b)¢(bg) = (b — a)¢,
(it) a(1 —b/c)¢(bg™") — b(1 = a/c)plag™") = (a — b)(1 — abz/cq),
(iit) g(1 —a/c)d(ag™") + (1 - a)(1 — abz/c)d(aq)
=[14+q—a—aq/c+a*z(1 —b/a)/c]p,
(iv) (1= c)(g—c)(abz = c)pleg™") + (¢ — a)(c — b)2g(cq)
= (¢ —1)[c(g — ¢) + (ca + cb — ab — abg)z] .
(Heine [1847])

1.11 Let g(0; A, i1, v) = (Xe¥, puv; @)oo 201 (e, ve™%; uv; q, Aet?). Prove that
g(0; A, p, v) is symmetric in A, p, v and is even in 6.

1.12 Let D, be the g-derivative operator defined for fixed g by

_ f(z) - flez)
PO = T
and let D2u = Dy(Dy~'u) for n =1,2,... . Show that
(i) ;Enl D,f(z) = dizf(z) if f is differentiable at z,
(ii) Dy 201(a,b;¢;9,2) = ( (a b q) q)" 2¢1(ag", bg";cq"; q, 2),
(iii) Dg {% 201(a,b;¢5q, 2
_ (¢/ac/bign (ab\" (24" @)oo Q)oo Cm o
= m (—> (abz/c,q - 261(a, b;cq"; q,29").

(iv) Prove the g-Leibniz formula

n

D{7Ia) =3 | }| 23t sttt

k=0
1.13 Show that u(z) = 2¢1(a,b;c;q, 2) satisfies (for |z| < 1 and in the formal
power series sense) the second order g-differential equation

l—¢ (1—a)(1-b)—(1—abg)
1—q+ 1—g¢q

z| Dyu

z(c— aqu)Dgu + [ q

B (1-a)(1-0)
(1-¢q)?
where D, is defined as in Ex. 1.12. By replacing a, b, ¢, respectively, by

g%, ¢, ¢° and then letting ¢ — 1~ show that the above equation tends to
the second order differential equation

2(1=2)" +c—(a+b+1)2]v' —abv =0

u =0,
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for the hypergeometric function v(z) = ,Fi(a, b;¢; z), where |z]| < 1.
(Heine [1847])

1.14 Let |z| < 1 and let eq4(x) and E4(z) be as defined in §1.3. Define

oy eq(im) —eg(—im) | o~ (=)™ !
sing (@) = 2 B ,; (¢ Dons1
eg(iz) + eg(—iz) o= (—1)"z?"

©05(#) = 2 B ,;) (@ @2n

Also define

Sinq(:z) — EII(Z:I:) ;fq(_ix), COSq(.'L‘) — Eq(’L.’L‘) —|-2Eq(—i.’1:)'

Show that

(1) eq(iz) = cosq(z) + ising(z),

(i) E,(iz) = Cosy(z) + iSing(z),

(iii) sing(x)Sing(x) + cosq(z)Cosqe(z) = 1,

(iv) sing(z)Cosq(z) — Sing(z) cosy(x) = 0.

For these identities and other identities involving g-analogues of sin z and
cos z, see Jackson [1904a] and Hahn [1949c].

1.15 Prove the transformation formulas

: qa b, _ (52¢7" /e 9) o0 . ¢/b,0
(1) 2¢1 |: ¢ aqaZ:| - W 3¢2 |: e, CQ/bZ aqaq:|

(ii) 291 [q_",b;q,z] = (c/b q)nbn 391 [q_”,_b, q/Z;CIaZ/C] ;

¢ (c;@)n bq' /e
b _ (e/b;n [q_", b,bzq™"/c ]
(111) 2¢1 |: c y 4, Z:| - (C, q)n 3 ¢2 bql_n/C, 0 4,41 -

(See Jackson [1905a, 1927])
1.16 Show that

n n(n+ /2 _

= (- 90 (ag; oo

3G

1.17 Show that

zn: (a,b; @)k (_ab)n—kq(n—k)(n+ k—1)/2
= (@G k

k ( )
(@ @ 1 Z i) gy (Corlitz [1974)
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1.18 Show that

(i) (600 191(a5¢; 0, 2) = (23900 191 (az/c; 25, ¢),

and deduce that |¢1(—bg;0;¢, —q) = (=bq*; ¢*) oo/ (q; @)oo
(i)  (259) 261(a,0;¢9,2) = (a2; Q)00 192(a5 ¢, az; g, c2),
) 3 B ) at/a) 21 (a7 as 0" as 0,07 )

= (q,0%q)n

= (—2t;@)o0 2¢1(a,a/2%;a%5 ¢, —2t), |2t| < 1.

1.19 Using (1.5.4) show that

. a,q/a (ab,bq/a;q*) oo
3q,—b) = —7—~——,

) 292 [ —q,671 ] (b3 9)oc

) @2, P (0?9, 145 ¢*)oo

(ii) 2¢2 [aqu abq‘ D —q] - m'

(Andrews [1973])
1.20 Prove that if Re z > 0 and 0 < ¢ < 1, then

(i) Ty(z) = (g 9)o(l —q)'~ Z
=0
y 1 (=gt & )
ii
() 0@ @0 Z
1.21 For 0 < ¢ < 1 and z > 0, show that
d ) &0 qn+1:
dz Zlogl" (z) = (logq) ;m,

which proves that logI'q(z) is convex for z > 0 when 0 < ¢ < 1.

1.22 Conversely, prove that if f(x) is a positive function defined on (0, co)which
satisfies
1—¢g°

flz+1) = ¢ f(z) for some q¢,0 < g < 1,

f1) =1,

and log f(z) is convex for £ > 0, then f(z) = [y(z). This is Askey’s
[1978] g-analogue of the Bohr-Mollerup [1922] theorem for I'(z). For two
extensions to the ¢ > 1 case (with I'y(z) defined as in the next exercise),
see Moak [1980b].

1.23 For ¢ > 1 the g-gamma function is defined by

—1. -1
q ;9 oo —z_o(z—
Ly(z) = Eq—z.q—I; (g-— 1)1 7 D72,
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1.24

1.25

1.26
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Show that this function also satisfies the functional equation (1.10.5) and
that I'y(z) — I'(z) as ¢ — 1*. Show that for ¢ > 1 the residue of I'y(z)
at = —nis

(-1 1q(")

(¢:q)nlogg
Jackson [1905a,b,e] gave the following g-analogues of Bessel functions:

v+ 1

JI(/I) (iL', q) = u(x/Q)V 2¢l (07 07 qu+ ! y 4 —1'2/4),
CHES
v+ 1 ) £L'2 qu+ 1

J(Z) (q 1 q 2/2)" o0 <; vilog >’

qu+ 1 1) oo ” .
I (5) = (—)<m/2> 161 (05" 15 q,qa%/4),

(¢ 9) oo

where 0 < ¢ < 1. The above notations for the ¢-Bessel functions are due
to Ismail [1981, 1982, 2003c].
Show that

JP (z;9) = (-2*/4;q9) I (z59), |z <2, (Hahn [1949c])
and

lim J (2(1 - g);q) = (),  k=1,23.
q—}

For the g-Bessel functions defined as in Exercise 1.24 prove that

O eI =2 ® e - I @), k=12
(i) IV (@etiq) = ¢ (S (@30) + ST (2:9) )

(i) IV (@etiq) = a7 (1 (@) - I (w50)) -

(iv) ¢ I, (g /;q>=@Jﬁ”@;q)—ﬁ?l(w;q»

(i) Following Ismail [1982], let

fula) = T (25,9)7%) (mq3; q) — T (2 ) IOV (g 5 9).

Show that )
fu(mq%) = (1 + %) fu(x)

and deduce that, for non-integral v,

fo@) =7 (¢", ¢ 7 D)oo/ (0,9, —22 /45 @)oo
(ii) Show that

9 (qz) + (w2/4 —q’ - q‘”)gu(w) +gu(zq') =0
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1.28
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with g, (z) = J$ (2¢”/?;¢%) and deduce that

0910~ - 9ol fa ™) = LT N o,
(Ismail [2003c])
Show that
(i) Z " IP (z;9) = (—2% /45 q)  eq(xt/2)eq(—z/28),
(i) > "I (;q) = eq(wt/2) By(—qz/28).

Both of these are g-analogues of the generating function

[e 0]

3t (a) = e,

n= —oo

The continuous g-Hermite polynomials are defined in Askey and Ismail
[1983] by

T (q,Q)n gi(n—2k)0
Halzla) = Z “ (4;9)k (g5 @) ’

where z = cos8; see Szegd [1926], Carlitz [1955, 1957a, 1958, 1960] and
Rogers [1894, 1917]. Derive the generating function

zlfl) 1
Z @9 (tela P |t| <1. (Rogers [1894])

The continuous q-ullraspherical polynomials are defined in Askey and Is-
mail [1983] by

Cu(z; Blg) = Z(('z k(ﬂ’ - el 20,

where £ = cos§. Show that

(ﬂ7 )’" znG |: _nyﬂ 1 —219:|
Crn(z; Blq) = @ 201 | g1 41— 39087

(ﬂz Qn o—inf g—n g ", 8,8e*%
(q’ ) GIB ¢ |: ﬂ270 ;q;q:|’
lim Cn (39 Mg) = Ch(z),

and

n_ (Bte, Bte™; q)
Zc (z; Blg)t™ = ( (i te—w-q)) , [t| < 1. (Rogers [1895])

n=0
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1.30

1.31

1.32

Basic hypergeometric series

Show that if mq,...,m, are nonnegative integers, then
. b, big™,...,b.q™r (gt ot
(i) re 1P 1 [ lgq,b’l,...,rli ;g q' T)]
_ (0 @)oo (b1 /85 Q)my - - - (b,./b; Dm, prmat et me
(b¢; @)oo (015 @)y~ - (br; @)m, ’
] bl qmla ce 7b7‘qmr . —(mi+ -+ my) |
(11) 7‘¢7‘|: bl,”-;br y 4,4 _Oa
big™, .. b @™ (myt et my)
(111) 7‘¢7‘ |: bl,-o-,br )q’q

(=)™ (g3 @Joob™ -+ B (M (7).
(515 my -+ (br; Q.

(Gasper [1981a])
Let Ay denote the g-difference operator defined for a fixed g by
Aof(z) = bf(a2) — ().
Then A; is the A operator defined in (1.3.20). Show that
Apz™ = (bg"™ — 1)z
and, if

(a1,...,a.; Q)n (_1)(1+ s—r)nq(1+ s—r)n(n-1)/2 n
¢,b1,.,bs; Q) ’

vn(2) =
(
then
(Al jqAby /g Db, /q)vn(2)
= 2(Ag, Day Do )0n1(2¢'757T), n=1,2,... .
Use this to show that the basic hypergeometric series
v(z) = pds(@1,-.-,ar301,...,bs54, 2)
satisfies (in the sense of formal power series) the g-difference equation
(AAbl/qAbz/q T Abs/q)v(z) = 2(Aqg, - Aar)v(qu ).

This is a g-analogue of the formal differential equation for generalized
hypergeometric series given, e.g. in Henrici [1974, Theorem (1.5)] and
Slater [1966, (2.1.2.1)]. Also see Jackson [1910d, (15)].

The little g-Jacobi polynomials are defined by

pn(z50,b,9) = 201(q7 ", abg™ !5 aq; ¢, gz).

Show that these polynomials satisfy the orthogonality relation
o~ (049 i :
> 2= (ag)pa(¢; 0,5, 9)pm(¢; 0, b; q)
= (8:9);

07 lf m # 'n/,
={ (g,bg;9)n(1 — abg)(aq)” (abg*;q)co
(aq,abg; @)n(1 — abg™ 1) (ag; q)oo

, ifm=n.
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(Andrews and Askey [1977 |)
1.33 Show for the above little g-Jacobi polynomials that the formula

pu(Tic,diq) = Y aknpi(w; a, by q)
k=0

holds with

k+ 1 (q ag qu"+ 1. ) q cdqn+ k+ 1 aqk+ 1
2 ) 9 ) 5 . .
(¢, cq, abg** 1; @)k 302 g+ l,abq2k+ 2 14,4

(Andrews and Askey [1977])

1.34 (i) If m,m;,my,...,m, are arbitrary nonnegative integers and
la=lgm+1=(mat =+ mo)| < 1 show that
a, ba blqmla s ;b’r'q
bq1+m’b1,'-';b’r‘
_ (q, bQ/a Q) (bq, ) (bl /b q)ml e (b”‘/b’ q)mr pmat ot me—m
(69, 4/; @)oo (€ D (015 Dmy -+ (br; Dm,

yg,a g

-1 m+1—(mi+ - +m,-):|

r+ 2¢7‘+ 1 |:

x ¢ |: q_mababq/bla"'abq/br qq:|
2Pl bg/a,bg' =™ /by,..., bg' =™ /b
(ii) if my,ma, ..., m, are nonnegative integers and |a~!g! ~(mt T M| <

1, |eg| < 1, show that

a;b;blqmla"';brq "

r+z¢r+1[ ;g0 g T (Mt ”””]

beq, by, ..., b,
_ (bg/a,cq; @)oo (b1/b;Q)my - - - (br/b; @, T
(beq,9/8;9) 0 (b1 my -+ (br; Dm,
c 1, bg/bi,...,bg/by
bg/a,bg' =™ /by, ..., bg' =™ /b,

X i 2Pri 1 [ ;q,cq]-

(Gasper [1981a])

1.35 Use Ex. 1.2(v) to prove that if z and y are indeterminates such that
Ty = qyz, q commutes with = and y, and the associative law holds, then

n N~ [P konek N~ [P k,n—k
SIS N DI
k=0 k=0
(See Cigler [1979], Feinsilver [1982], Koornwinder [1989], Potter[1950],
Schiitzenberger [1953], and Yang [1991]).

1.36 Verify that if £ and y are indeterminates satisfying the conditions in
Ex. 1.35, then

(i) eq(y)eq(z) = (T +y), €q(T)eq(y) = eq(z +y — yz);
(i) Ey(z)Ey(y) = Eq(z +y), Ey(y)Eq(z) = Eg(z +y + yz).
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(Fairlie and Wu [1997]; Koornwinder [1997], where g-exponentials with
g-Heisenberg relations and other relations are also considered.)

1.37 Show that
2:6®) oo —qe?, _ge—2i0
Ey(z0) = % {2¢1 [ ? q ? ;qz’az}

(ga?;q
9g1/4 _2.2i0 . 2.—2i8
+ 1q acosf ¢ [ Te ’q3 Te ,qz,az]}

with 2 = cos §.

1.38 Extend Jacobi’s triple product identity to the transformation formula

n — (ab/q;@)2ng™
n= 0 ) b ) b) n

Deduce that

1+2Za” 2n? wolag;q OOZ ,anq

= (0, —ag;O)n(ag; ¢*)n

(Warnaar [2003a])

Notes

§§1.1 and 1.2  For additional material on hypergeometric series and orthog-
onal polynomials see, e.g., the books by Erdélyi [1953], Rainville [1960], Szegd
[1975], Whittaker and Watson [1965], Agarwal [1963], Carlson [1977], T.S. Chi-
hara [1978], Henrici [1974], Luke [1969], Miller [1968], Nikiforov and Uvarov
[1988], Vilenkin [1968], and Watson [1952]. Some techniques for using sym-
bolic computer algebraic systems such as Mathematica, Maple, and Macsyma
to derive formulas containing hypergeometric and basic hypergeometric se-
ries are discussed in Gasper [1990]. Also see Andrews [1984d, 1986, 1987b],
Andrews, Crippa and Simon [1997], Andrews and Knopfmacher [2001], An-
drews, Knopfmacher, Paule and Zimmermann [2001], Andrews, Paule and
Riese [2001a,b], Askey [1989f, 1990], Askey, Koepf and Koornwinder [1999],
Boing and Koepf [1999], Garoufalidis [2003], Garoufalidis, Le and Zeilberger
[2003], Garvan [1999], Garvan and Gonnet [1992], Gosper [2001], Gosper and
Suslov [2000], Koepf [1998], Koornwinder [1991b, 1993a, 1998|, Krattenthaler
[1995b], Paule and Riese [1997], Petkovsek, Wilf and Zeilberger [1996], Riese
[2003], Sills [2003c], Wilf and Zeilberger [1990], and Zeilberger [1990b].
§§1.3-1.5 The g¢-binomial theorem was also derived in Jacobi [1846],
along with the ¢g-Vandermonde formula. Bijective proofs of the g-binomial
theorem, Heine’s 5 ¢ transformation and g-analogue of Gauss’ summation for-
mula, the ¢g-Saalschiitz formula, and of other formulas are presented in Joichi
and Stanton [1987]. Rahman and Suslov [1996a] used the method of first or-
der linear difference equations to prove the ¢-binomial and ¢-Gauss formulas.
Bender [1971] used partitions to derive an extension of the ¢-Vandermonde
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sum in the form of a generalized g-binomial Vandermonde convolution. The
even and odd parts of the infinite series on the right side of (1.3.33) appeared
in Atakishiyev and Suslov [1992a], but without any explicit reference to the
g-exponential function. Also see Suslov [1998-2003] and the g-convolutions in
Carnovale [2002], Carnovale and Koornwinder [2000], and Rogov [2000].

§1.6  Other proofs of Jacobi’s triple product identity and/or applications
of it are presented in Adiga et ol [1985], Alladi and Berkovich [2003], An-
drews [1965], Cheema [1964], Ewell [1981], Gustafson [1989], Joichi and Stan-
ton [1989], Kac [1978, 1985], Lepowsky and Milne [1978], Lewis [1984], Mac-
donald [1972], Menon [1965], Milne [1985a], Sudler [1966], Sylvester [1882],
and Wright [1965]. Concerning theta functions, see Adiga et al. [1985], Askey
[1989c¢], Bellman [1961], and Jensen’s use of theta functions in Pélya [1927] to
derive necessary and sufficient conditions for the Riemann hypothesis to hold.

§1.7 Some applications of the g-Saalschiitz formula are contained in Car-
litz [1969b] and Wright [1968].

§1.9 Formulas (1.9.3) and (1.9.8) were rediscovered by Gustafson [1987a,
Theorems 3.15 and 3.18] while working on multivariable orthogonal polynomi-
als.

§1.11 Also see Jackson [1917, 1951] and, for fractional g-integrals and
g-derivatives, Al-Salam [1966] and Agarwal [1969b]. Toeplitz [1963, pp. 53-55]
pointed out that around 1650 Fermat used a g-integral type Riemann sum to
evaluate the integral of z* on the interval [0,b]. Al-Salam and Ismail [1994]
evaluated a g-beta integral on the unit circle and found corresponding systems
of biorthogonal rational functions.

Ex.1.2 The ¢-binomial coefficient [:] , which is also called the Gaus-

sian binomial coefficient, counts the number lé)f k dimensional subspaces of an
n dimensional vector space over a fleld GF(q), g a prime power (Goldman and
Rota [1970]), and it is the generating function, in powers of g, for partitions into
at most k parts not exceeding n— k (Sylvester [1882]). It arises in such diverse
fields as analysis, computer programming, geometry, number theory, physics,
and statistics. See, e.g., Aigner [1979], Andrews [1971a, 1976], M. Baker and
Coon [1970], Baxter and Pearce [1983], Berman and Fryer [1972], Dowling
[1973], Dunkl [1981], Garvan and Stanton [1990], Handa and Mohanty [1980],
Ihrig and Ismail [1981], Jimbo [1985, 1986], van Kampen [1961], Kendall and
Stuart [1979, §31.25], Knuth [1971, 1973], Pélya [1970], Pélya and Alexander-
son [1970], Szeg6 [1975, §2.7], and Zaslavsky [1987]. Sylvester [1878] used the
invariant theory that he and Cayley developed to prove that the coefficients of

the Gaussian polynomial [Z] = Eajqj are unimodal. A constructive proof
g
was recently given by O’Hara [1990]. Also see Bressoud [1992] and Zeilberger
[1989a,b, 1990b]. The unimodality of the sequence ([Z] k=0,1,... n) is
q

explicitly displayed in Aigner [1979, Proposition 3.13], and Macdonald [1995,
Example 4 on p. 137].

Ex.1.3 Cigler [1979] derived an operator form of the ¢-binomial theorem.
MacMahon [1916, Arts. 105-107] showed that if a multiset is permuted, then
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the generating function for inversions is the ¢g-multinomial coefficient. Also see
Carlitz [1963a], Kadell [1985a], and Knuth [1973, p. 33, Ex. 16]. Gasper derived
the g-multinomial theorem in part (ii) several years ago by using the ¢-binomial
theorem and mathematical induction. Andrews observed in a 1988 letter that it
can also be derived by using the expansion formula for the ¢g-Lauricella function
®p stated in Andrews [1972, (4.1)] and the g-Vandermonde sum. Some sums
of g-multinomial coefficients are considered in Bressoud [1978, 1981c|. See also
Agarwal [1953a].

Ex.1.8 Jain [1980c| showed that the sum in this exercise is equivalent to
the sum of a certain 3%, series, and summed some other ;% series.

Ex.1.10 Analogous recurrence relations for ;¢ series are given in Slater
[1954c].

Exercises 1.12 and 1.13  The notations Ay, ¥4, and D, are also employed
in the literature for this g-derivative operator. We employed the script D, op-
erator notation to distinguish this ¢-derivative operator from the ¢-derivative
operator defined in (7.7.3) and the g-difference operator defined in Ex. 1.31.
Additional results involving g-derivatives and g-difference equations are con-
tained in Adams [1931], Agarwal [1953d], Andrews [1968, 1971a], Bowman
[2002], Carmichael [1912], Di Vizio [2002, 2003], Faddeev and Kashaev [2002],
Faddeev, Kashaev and Volkov [2001], Hahn [1949a,c, 1950, 1952, 1953], Is-
mail, Merkes and Styer [1990], Jackson [1905¢, 1909a, 1910b,d,e], Miller [1970],
Mimachi [1989], Sauloy [2003], Starcher [1931], and Trjitzinsky [1933]. For
fractional g-derivatives and ¢-integrals see Agarwal [1969b] and Al-Salam and
Verma [1975a,b]. Some “g-Taylor series” are considered in Jackson [1909b,c]
and Wallisser [1985]. A g¢-Taylor theorem based on the sequence {¢,(z)}22
with ¢, (z) = (ae®,ae™%; q),,, v = cosf, was obtained by Ismail and Stanton
[2003a,b] along with some interesting applications.

FEx.1.14 For g-tangent and ¢-secant numbers and some of their proper-
ties, see Andrews and Foata [1980] and Foata [1981]. A discussion of
g-trigonometry is given in Gosper [2001]. See also Bustoz and Suslov [1998]
and Suslov [2003].

Exercises 1.20-1.23 Ismail and Muldoon [1994] studied some inequalities
and monotonicity properties of the gamma and ¢-gamma functions.

Ex.1.22 Also see Artin [1964, pp. 14-15]. A different characterization of
I, is presented in Kairies and Muldoon [1982].

Exercises 1.24-1.27 Other formulas involving ¢-Bessel functions are con-
tained in Jackson [1904a—d, 1908], Ismail and Muldoon [1988], Rahman [1987,
1988¢, 1989b,c], and Swarttouw and Meijer [1994]. It was pointed out by Is-
mail in an unpublished preprint in 1999 (rewritten for publication as Ismail

[2003c]) that J,S”(a;;q) was actually introduced by Jackson [1905a], contrary
to the claim in Swarttouw [1992] that a special case of it was first discovered
by Hahn [1953] and then in full generality by Exton [1978].

Ex.1.28 See the generating functions for the continuous g-Hermite poly-
nomials derived in Carlitz [1963b, 1972] and Bressoud [1980b], and the appli-
cations to modular forms in Bressoud [1986]. An extension of these ¢g-Bessel
functions to a g-quadratic grid is given in Ismail, Masson and Suslov [1999].
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Ex.1.32 Masuda et al. [1991] showed that the matrix elements that arise
in the representations of certain quantum groups are expressible in terms of
little g-Jacobi polynomials, and that this and a form of the Peter-Weyl theorem
imply the orthogonality relation for these polynomials. Padé approximants for
the moment generating function for the little g-Jacobi polynomials are em-
ployed in Andrews, Goulden and D.M. Jackson [1986] to explain and extend
Shank’s method for accelerating the convergence of sequences. Padé approxi-
mations for some ¢g-hypergeometric functions are considered in Ismail, Perline
and Wimp [1992].





